Theoretical/Computational Neuroscience

Gulf Coast Consortium for Theoretical and Computational Neuroscience

Leveraging computational power to better understand the mind through researchers empowered to share ideas, information and technology.

The Theoretical and Computational Neuroscience (TCN) provides a mechanism and environment for interactions that potentially could generate novel projects of a significant scale outside of the reach of any one institution. From a research perspective, the TCN serves as a catalyst that attracts and unites those interested in theoretical or computational neuroscience, pools resources and expertise, and results in inter-institutional collaborations that compete for grants.

Interested in joining the TCN Consortium? Please contact Kresimir Josic, chair; Harel Shouval, vice chair; or Suzanne Tomlinson, GCC.

The 15th Annual TCN Conference will be held in early 2018.  Please check back for details.
The 14th Annual TCN Conference was Thursday – Friday, January 26-27, 2017.  For agenda, please click here.


Experimental Neuroscience has successfully identified the molecules and many of the neural pathways of the mind. In a number of important cases, e.g., spatial memory in rats, it has directly linked these players and pathways to behavior. In many cases it remains, however, unclear to what extent these finding actually "explain" behavior. For although our neurons share a common chemical composition, there are over 100 billion neurons per brain--each talking with approximately 10000 of its neighbors across synapses that are rapidly strengthened or weakened as a function of activity.

In order to bridge mind and molecule we must tame this neural net. The complexity of the net, together with its ability to change under our eyes, argues against relying solely on intuition and for the construction of a theoretical framework that yields computationally tractable predictions and helps guide further experiment.

Traditional Neuroscience uses reductionism to formulate hypotheses and tests them experimentally, while Theoretical and Computational Neuroscience builds on Information Theory, Dynamical Systems Theory, and Computer Science to create theoretical models to be tested numerically.  Collaborations of neuroscientists, individually trained in experimental and computational approaches, are not unusual on the basis of experimental data. In extension of this, we advocate a synergistic use of both approaches to control the experiment itself. Commensurate with our escalating knowledge of neural function, the complexity of experiments to analyze both healthy and diseased brain function is ever-increasing. In this situation, it is necessary to utilize the analytic and predictive nature of Theoretical and Computational Neuroscience not only between but rather during experiments.


Show less
GCC Theoretical and Computational Neuroscience Executive Committee

Krešimir Josić, PhD,  University of Houston

Vice Chair
Harel Shouval, PhD,  The University of Texas Health Science Center at Houston

Other Members
Fabrizio Gabbiani, PhD,  Baylor College of Medicine

Prahlad Ram, PhD,  MD Anderson Cancer Center

Kelly Dineley, PhD,  The University of Texas Medical Branch at Galveston

Xaq Pitkow, PhD,  Baylor College of Medicine/Rice University

All faculty participating in the Theoretical and Computational Neuroscience Consortium are affiliated with one of the Gulf Coast Consortia member institutions:

Baylor College of Medicine
Rice University
University of Houston
University of Texas Health Science Center - Houston
University of Texas M.D. Anderson Cancer Center
University of Texas Medical Branch - Galveston
Institute of Biosciences and Technology at Texas A&M Health Science Center

Show less