
A Tale of Two Tails: PasT Toxin Exhibits Dual Functions

Taylor Blackburn, M.S.
Emory University
Department of Chemistry
ARTDTP T32

• Extraintestinal pathogenic *E. coli* (ExPEC) is the most common gram-negative bacterial pathogen in humans

- Extraintestinal pathogenic *E. coli* (ExPEC) is the most common gram-negative bacterial pathogen in humans
- ExPEC cause a wide variety of infections, have high incidence rates of clinical syndromes, and are increasingly exhibiting antimicrobial resistance

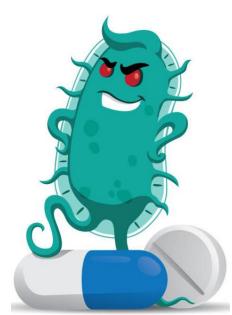
Clinical Syndrome	ExPEC	Commensal <i>E. coli</i>
Uncomplicated UTI	Major cause	Minor cause
Complicated UTI	Major/minor cause	Major/minor cause
Prostatitis	Major cause	Minor cause
Spontaneous bacterial peritonitis	Major cause	Minor cause
Pneumonia	Major cause	Minor cause
Neonatal meningitis	Major cause	Minor cause
Community acquired bacteremia	Major cause	Minor cause
Nosocomal bacteremia	Major cause	Minor cause

- Extraintestinal pathogenic *E. coli* (ExPEC) is the most common gram-negative bacterial pathogen in humans
- ExPEC cause a wide variety of infections, have high incidence rates of clinical syndromes, and are increasingly exhibiting antimicrobial resistance

• Uropathogenic *E. coli* (UPEC) are a subset of ExPEC that are the major causative

agent of urinary tract infections (UTIs)

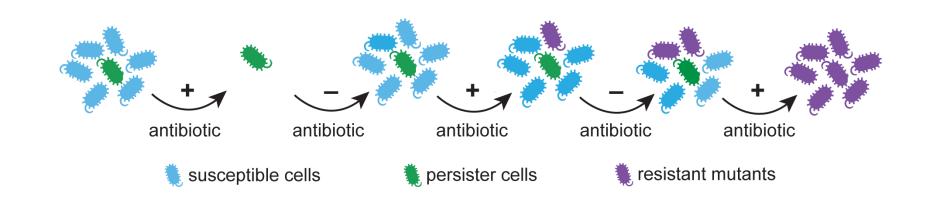
- Extraintestinal pathogenic *E. coli* (ExPEC) is the most common gram-negative bacterial pathogen in humans
- ExPEC cause a wide variety of infections, have high incidence rates of clinical syndromes, and are increasingly exhibiting antimicrobial resistance
- Uropathogenic *E. coli* (UPEC) are a subset of ExPEC that are the major causative agent of urinary tract infections (UTIs)


- 400 million cases & 230,000 deaths globally in 2019
- Most common among the elderly & women
- Nearly 50% of all women will experience a UTI

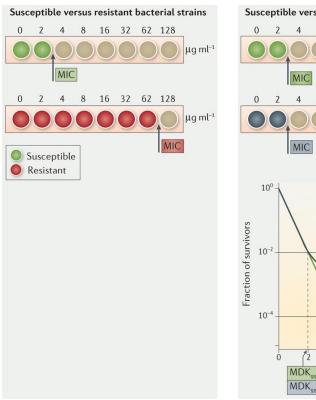
- Extraintestinal pathogenic *E. coli* (ExPEC) is the most common gram-negative bacterial pathogen in humans
- ExPEC cause a wide variety of infections, have high incidence rates of clinical syndromes, and are increasingly exhibiting antimicrobial resistance
- Uropathogenic *E. coli* (UPEC) are a subset of ExPEC that are the major causative agent of urinary tract infections (UTIs)

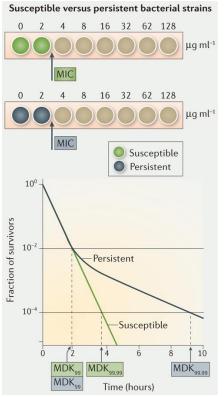
- Major burden on healthcare system
- ➤ 6% of U.S. medical visits & \$1.6 billion USD cost annually

- Extraintestinal pathogenic *E. coli* (ExPEC) is the most common gram-negative bacterial pathogen in humans
- ExPEC cause a wide variety of infections, have high incidence rates of clinical syndromes, and are increasingly exhibiting antimicrobial resistance
- Uropathogenic *E. coli* (UPEC) are a subset of ExPEC that are the major causative agent of urinary tract infections (UTIs)

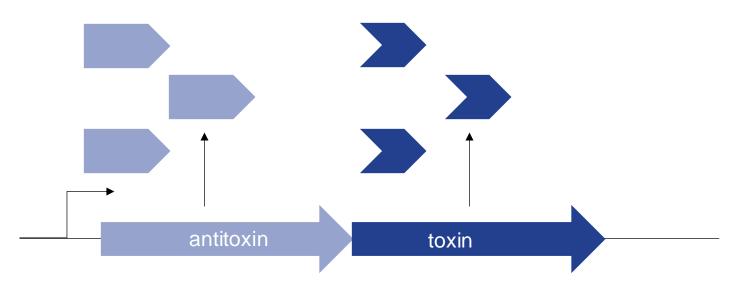


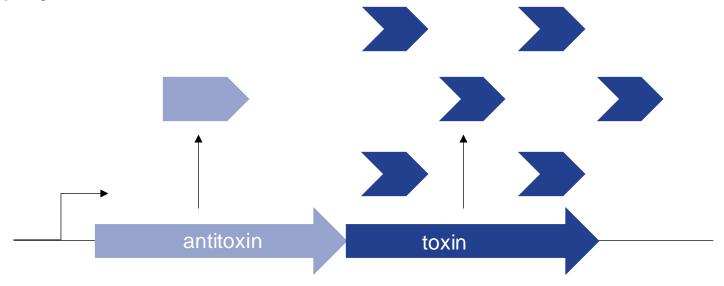
Propensity to reoccur, despite antibiotic therapy

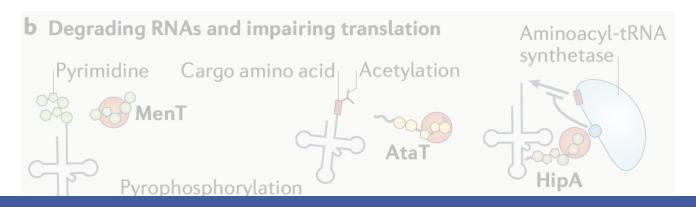

- Extraintestinal pathogenic *E. coli* (ExPEC) is the most common gram-negative bacterial pathogen in humans
- ExPEC cause a wide variety of infections, have high incidence rates of clinical syndromes, and are increasingly exhibiting antimicrobial resistance
- Uropathogenic *E. coli* (UPEC) are a subset of ExPEC that are the major causative agent of urinary tract infections (UTIs)

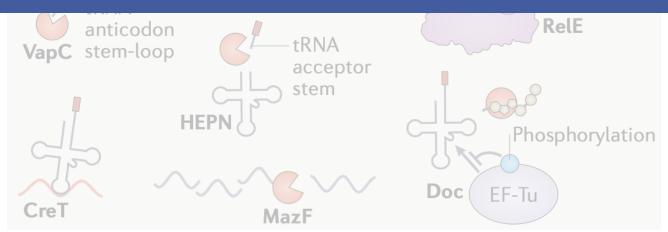

How do UPEC cause chronic and recurrent UTIs?

• UPEC are able to form metabolically quiescent cells called persister cells


- UPEC are able to form metabolically quiescent cells called persister cells
- Persisters are genetically identical to their susceptible parent population, but persistence has been shown to be sufficient for establishment of resistance mutations

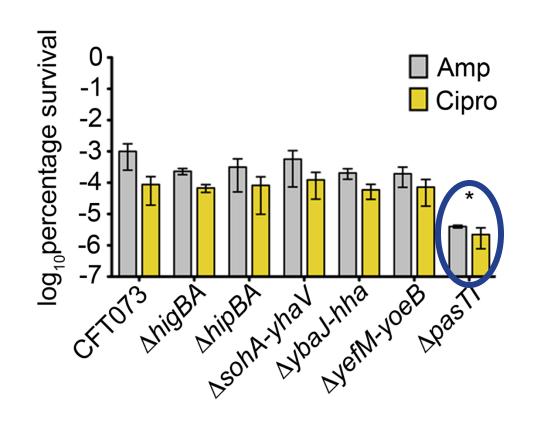



- UPEC are able to form metabolically quiescent cells called persister cells
- Persisters are genetically identical to their susceptible parent population, but persistence has been shown to be sufficient for establishment of resistance mutations
- Formation of persisters can be mediated by two-component genetic modules called toxin-antitoxin (TA) systems


- UPEC are able to form metabolically quiescent cells called persister cells
- Persisters are genetically identical to their susceptible parent population, but persistence has been shown to be sufficient for establishment of resistance mutations
- Formation of persisters can be mediated by two-component genetic modules called toxin-antitoxin (TA) systems

- UPEC are able to form metabolically quiescent cells called persister cells
- Persisters are genetically identical to their susceptible parent population, but persistence has been shown to be sufficient for establishment of resistance mutations
- Formation of persisters can be mediated by two-component genetic modules called toxin-antitoxin (TA) systems
- Currently 8 classes of TA systems defined by mechanism of the antitoxin, with diverse cellular targets

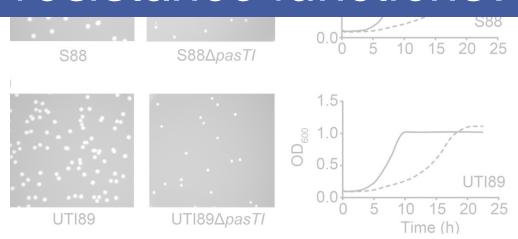
PasTI system promotes persistence and stress resistance of UPEC


PasTI system promotes UPEC persistence

Type II TA system PasTI identified in UPEC by persister and growth assays

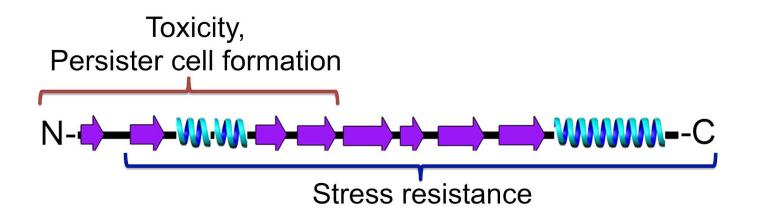
PasTI system promotes UPEC persistence

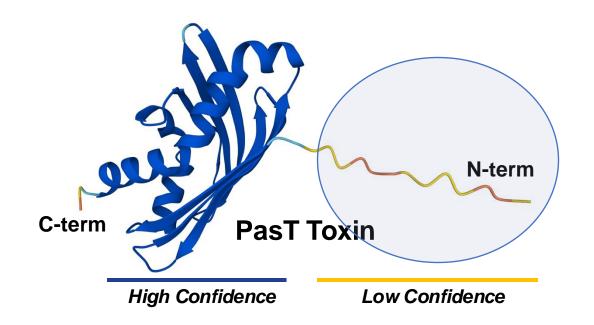

Type II TA system PasTI identified in UPEC by persister and growth assays



PasTI system promotes UPEC persistence

Type II TA system PasTI identified in UPEC by persister and growth assays

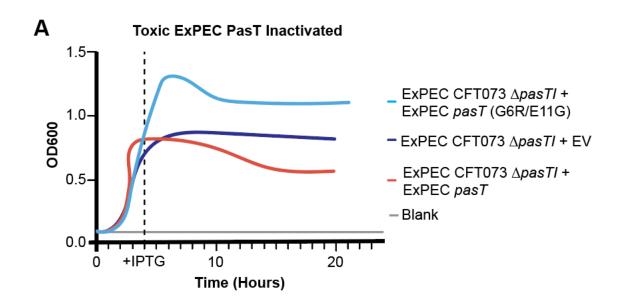

How does PasTI carry out distinct toxic and stress resistance functions?


Dual functions mapped to PasT termini

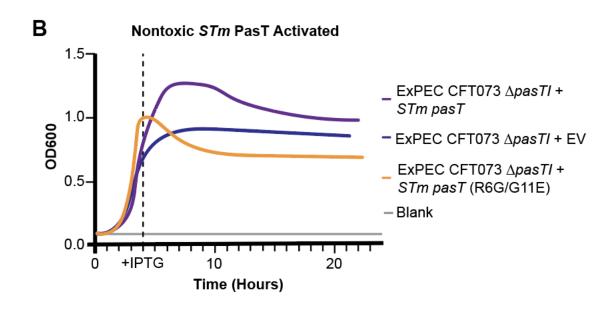
• Stress resistance and toxic functions of toxin PasT mapped to termini

Dual functions mapped to PasT termini

- Stress resistance and toxic functions of toxin PasT mapped to termini
- Predicted: disordered N-term and START domain fold C-term

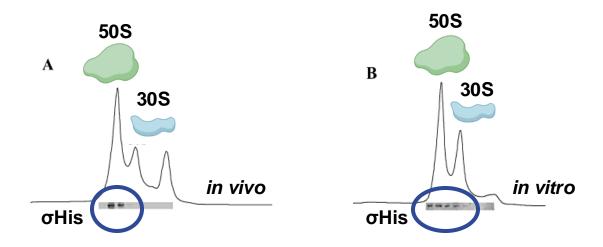

Residues in the N-term of PasT vary among toxic and nontoxic versions of the protein

Bacterium	PasT Sequence	Т	SR	Р
ExPEC	1-G-E158	++	+	+
N. meningitidis	-21 ————————————————————————————————————	ı	+	ľ
Y. pestis	+12145	-	+	ı
S. typhimurium	1- R - G 158	±	+	-

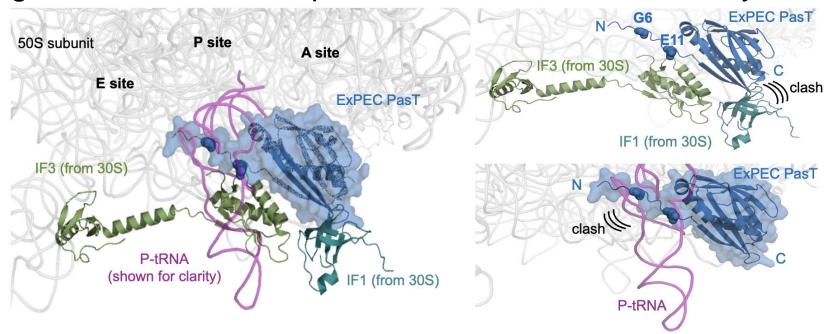

Residues in the N-term of PasT vary among toxic and nontoxic versions of the protein

PasT Sequence	Т	SR	Р
1-G-E158	++	+	+
-21 ————————————————————————————————————	-	+	ı
+12145	1	+	1
1-R-G158	±	+	-
1-R-G-158	-	+	ı
1-G-E158	++	+	+
	+6 +11 1-G-E — — 158 -21 — — — — — — — — — — — — — — — — — — —	-6 +11 1-G-E -158 ++ -21 -178 - +12 -145 - +6 +11 1-R-G -158 ± +6 +11 1-R-G -158 - +6 +11 1-R-G -158 -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

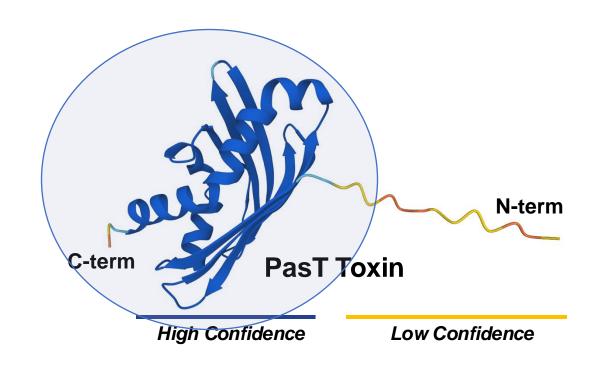
- Residues in the N-term of PasT vary among toxic and nontoxic versions of the protein
- Residues G6 and E11 can be mutated to inactivate toxic ExPEC PasT



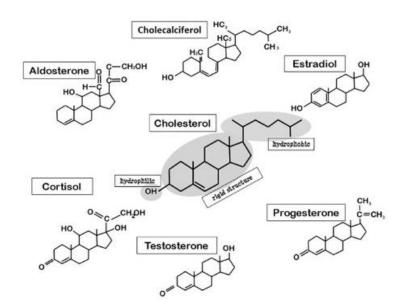
- Residues in the N-term of PasT vary among toxic and nontoxic versions of the protein
- Residues G6 and E11 can be mutated to inactivate toxic ExPEC PasT
- ... or activate nontoxic Salmonella typhimurium PasT to a toxic version



- Residues in the N-term of PasT vary among toxic and nontoxic versions of the protein
- Residues G6 and E11 can be mutated to inactivate toxic ExPEC PasT
- ... or activate nontoxic Salmonella typhimurium PasT to a toxic version
- Orthologous E. coli K-12 protein previously shown to bind the ribosome


- Residues in the N-term of PasT vary among toxic and nontoxic versions of the protein
- Residues G6 and E11 can be mutated to inactivate toxic ExPEC PasT
- ... or activate nontoxic Salmonella typhimurium PasT to a toxic version
- Orthologous E. coli K-12 protein previously shown to bind the ribosome
- N-term binding to ribosomal P-site predicted mechanism of toxicity

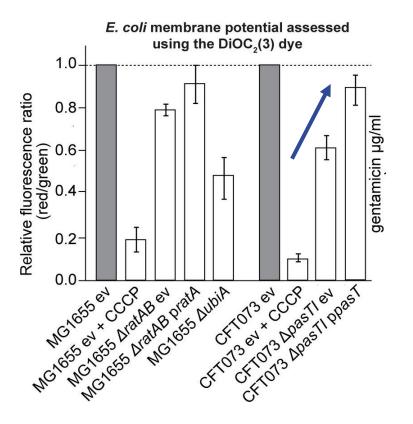
PasT C-term adopts START domain fold


 The C-term of PasT adopts a Steroidogenic Acute Regulatory Protein-related Lipid Transfer (START) fold

PasT C-term adopts START domain fold

 The C-term of PasT adopts a Steroidogenic Acute Regulatory Protein-related Lipid Transfer (START) fold

Cholesterol



Ubiquinone (CoQ₁₀)

Polyketides

PasT C-term adopts START domain fold

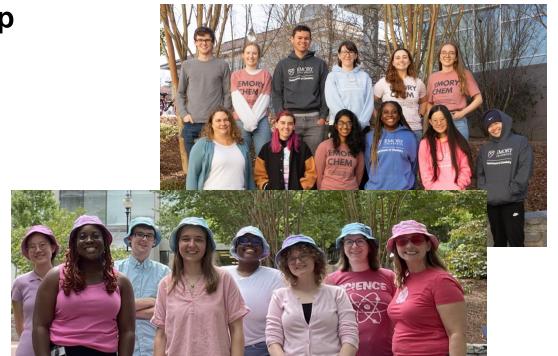
- The C-term of PasT adopts a Steroidogenic Acute Regulatory Protein-related Lipid Transfer (START) fold
- Likely interacts with the cellular membrane (at least transiently)

PasT exhibits dual functions

- PasT toxin of the PasTI system exhibits dual toxic and stress resistance functions
- PasT likely has multiple cellular targets
- The PasTI system supports persister cell development of UPEC

Future Questions:

What is the cellular target of the C-term START domain?


How does Pasl antitoxin stop the toxic function of PasT?

What selective pressures drove the emergence of a toxic N-term in ExPEC PasT?

Acknowledgements

Dunham Research Group

Dr. Christine Dunham Dr. Jacob Mattingly Julia Tanquary Edu Usoro Taylor Blackburn Sydni Alexis Elebra Megan Hinrichsen Chipo Kambarami Tiara Tillis Christina Hastings Frances Chiu Tzipi Freeman

Award: 5T32Al106699-09

Antimicrobial Resistance and Therapeutic Discovery Training Program

ARTDTP is supported by NIH funding though NIAID award T32 AI106699

5'- GGC AAG GAG GUA AAA AUG GAC UGA AAU CAC GCC AUG GGC A(A/G)A U - 3'

Mary Ludwig

Questions?

