

Understanding the Molecular Epidemiology of Non-CTX-M ESBL-producing Enterobacterales in the MidAtlantic United States

January 17th, 2024 Houston, TX

Infectious Diseases and ARLG Fellow, Dariusz Hareza, MD, MHS

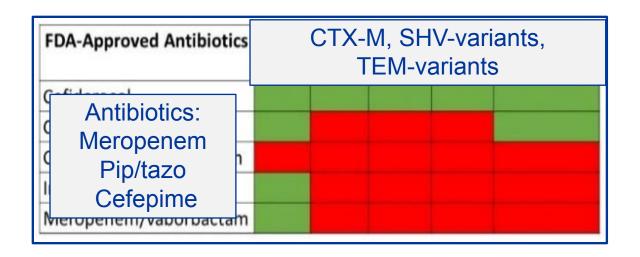
Disclosures

Nothing to disclose

ESBL-E Primer

- ESBL-E: 197,000 hospitalizations and 9,100 deaths in the United States (2017)
 - Rising compared to other resistance mechanisms
 - Multiple ESBL gene families (e.g., bla_{CTX-M}, bla_{SHV} variants, bla_{TFM} variants)
 - bla_{CTX-M} is most common
 - Contemporary estimates of the molecular epidemiology of ESBL genes is difficult to estimate
 - FDA cleared tests only detect $bla_{\rm CTX-M}$ and are limited to blood isolates

JAMA | Original Investigation


Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients With *E coli* or *Klebsiella pneumoniae* Bloodstream Infection and Ceftriaxone Resistance A Randomized Clinical Trial

Patrick N. A. Harris, MBBS; Paul A. Tambyah, MD; David C. Lye, MBBS; Yin Mo, MBBS; Tau H. Lee, MBBS; Mesut Yilmaz, MD; Thamer H. Alenazi, MD; Yaseen Arabi, MD; Marco Falcone, MD; Matteo Bassetti, MD, PhD; Elda Righi, MD, PhD; Benjamin A. Rogers, MBBS, PhD; Souha Kanj, MD; Hasan Bhally, MBBS; Jon Iredell, MBBS, PhD; Marc Mendelson, MBBS, PhD; Tom H. Boyles, MD; David Looke, MBBS; Spiros Miyakis, MD, PhD; Genevieve Walls, MB, ChB; Mohammed Al Khamis, MD; Ahmed Zikri, PharmD; Amy Crowe, MBBS; Paul Ingram, MBBS; Nick Daneman, MD; Paul Griffin, MBBS; Eugene Athan, MBBS, MPH, PhD; Penelope Lorenc, RN; Peter Baker, PhD; Leah Roberts, BSC; Scott A. Beatson, PhD; Anton Y. Peleg, MBBS, PhD; Tiffany Harris-Brown, RN, MPH; David L. Paterson, MBBS, PhD; for the MERINO Trial Investigators and the Australasian Society for Infectious Disease Clinical Research Network (ASID-CRN)

Does knowing the ESBL family matter?

- Unclear if ESBL gene family should guide treatment
 - Ex: Carbapenems
- When molecular data is available, most studies have majority CTX-M ESBL-Es
 - MERINO: 83.5% CTX-M

Why is this important?

- Ceftriaxone-R used as a proxy for ESBL production
 - Can lead to overtreatment with carbapenems when organism not actually an ESBL-E
- Other methods can lead to ESBL genes being missed
 - Phenotypic: cefepime-S or pip/tazo-S can be misleading (should still use carbapenems)

Comparing outcomes of non-CTX-M and CTX-M ESBL-E infections

- Clinical outcomes of 30-day mortality and 30-day ESBL-E recurrence
- Exploratory analysis within non-CTX-M cohort
 - Treatment outcomes with meropenem, cefepime or pip/tazo

Methods

- 500 ceftriaxone-resistant Enterobacterales bloodstream isolates
- MALDI-TOF identified species
- MICs were confirmed with BMD
- Whole genome sequencing (WGS) to identify ESBL genes
 - Illumina short-read sequencing

Methods

- 2018–2022 from Johns Hopkins hospitals
- Adult and pediatric patients
- Obtained during routine clinical care
- Clinical chart review performed

Analysis

- Inverse probability weighting using propensity scores
 - Used in causal inference
 - Goal: Balance of covariates between non-CTX-M and CTX-M groups
 - Addresses bias of known variables

Table 1

	Baseline Characteristics	Full Cohort		Inverse Probability Weighted Cohort			
		Non-CTX -M (n=32)	CTX-M (n=364)	Weighted Non-CTX-M (%)	Weighted CTX-M (%)	Standardized Mean Difference	
	Age ≥65 years, n (%)	14 (43.8)	159 (43.7)	(20.1)	(20.9)	105	
	Severe Immunocompromise, n (%)	8 (25.0)	117 (32.1)	(18.4)	(15.2)	.0745	
	ICU, n (%)	18 (56.3)	182 (50.0)	(28.4)	(24.2)	.0730	
	Pitt Bacteremia Score ≥4 on day 1, n (%)	9 (28.1)	89 (24.4)	(15.7)	(11.9)	.115	
	Charlson comorbidity index ≥5 on day 1, n (%)	13 (40.6)	172 (47.3)	(20.8)	(22.4)	143	
	Carbapenem administered as culture-directed therapy, n (%)	22 (68.8)	335 (92.0)	(48.1)	(43.3)	.0342	

Table 2

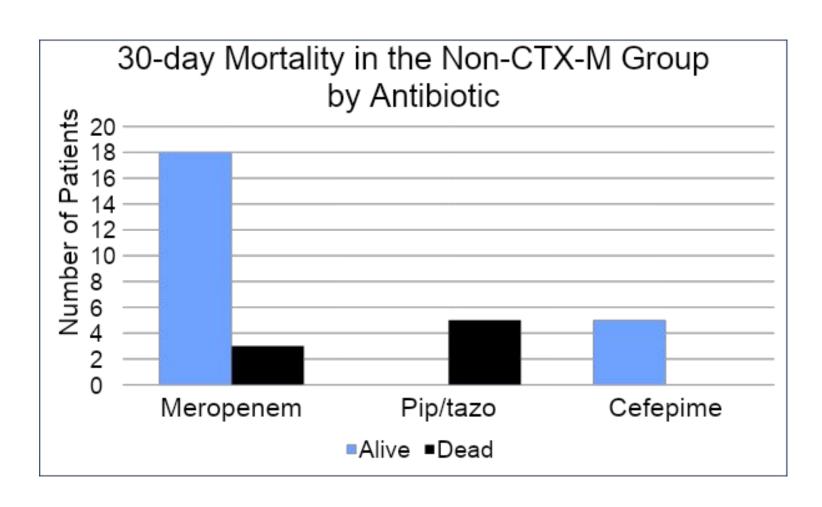
Ceftriaxone-R Enterobacterales Molecular Epidemiology

	ESBL Family					
Organism	CTX-M (n=370)	OXY (n=12)	SHV (n=16)	VEB (n=5)		
Enterobacter cloacae complex	5 (1%)	0	3 (19%)	0		
Escherichia coli	265 (72%)	0	0	0		
Klebsiella aerogenes	3 (<1%)	0	1 (6%)	0		
Klebsiella oxytoca	5 (1%)	12 (100%)	1 (6%)	0		
Klebsiella pneumoniae	88 (24%)	0	10 (63%)	0		
Proteus mirabilis	3 (<1%)	0	0	5 (100%)		
Providencia stuartii	1 (<1%)	0	0	0		
Serratia marcescens	0	0	1 (6%)	0		

^{*}No ESBL genes were found in 20.8% of isolates

Adapted from Hareza DA, et al. Clin Infect Dis. 2023. In press.

^{**}ampC genes were found in 8 (100%) Citrobacter freundii, 51 (100%) E. cloacae complex, 2 (2%) K. pneumoniae, 18 (100%) K. aerogenes, 2 (100%) Morganella morganii, 1 (11%) P. mirabilis, 1 (100%) P. stuartii, and 9 (100%) S. marcescens isolates


Clinical Outcomes in the IPW Cohort

Outcome	Percent with Outcome	Odds Ratio	95% Confidence Interval	p-value
30-day mortality (non-CTX-M vs CTX-M)	16%	.99	.87-1.11	.83
30-day ESBL-E recurrence (non-CTX-M vs CTX-M)	10%	1.10	.85-1.42	.47

•Similarly concerning outcomes (30-day mortality, ESBL-E recurrence) between non-CTX-M and CTX-M groups

Should we use meropenem for non-CTX-M ESBL-E infections?

Conclusions

- Meropenem associated with improved 30-day mortality within the non-CTX-M group
- Overall Conclusion
 - Potential benefit of early diagnostics and issues with using MICs alone to guide treatment

Limitations

- Observational data
 - Residual confounding
- Small sample size
- Only hospitals in Maryland

Next Steps

- Continue to study clinical outcomes and molecular epidemiology of non-CTX-M ESBL-Es
- Expand the 500-isolate cohort
- Increase geographic reach

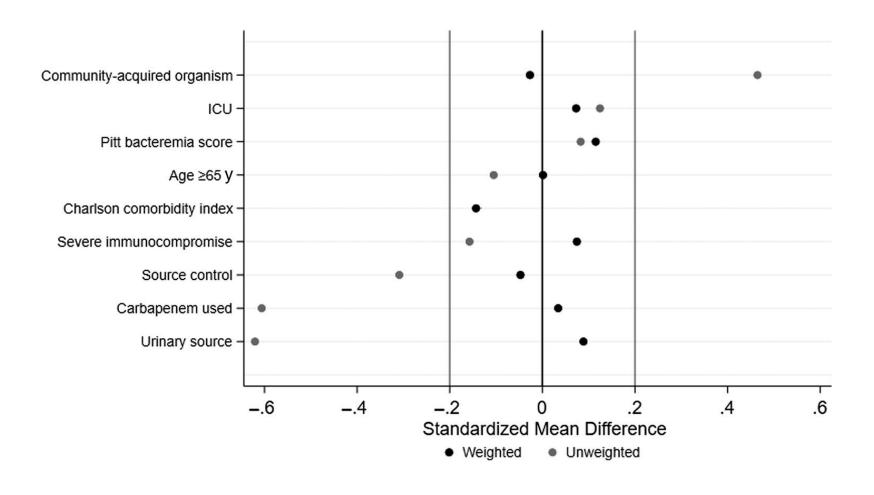
Acknowledgments

Mentors

Pranita Tamma Sara Cosgrove

Funding

Antibacterial Resistance Leadership Group NIH Loan Repayment Program NIH T32 Grant CDC Prevention Epicenters Program


Collaborators

Micro lab: Patricia Simner, Yehudit Bergman, Emily Jacobs

DAH was supported by an Antibacterial Resistance Leadership Group fellowship [National Institute of Allergy and Infectious Diseases UM1AI104681]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Table 1

22 923 52325 61 25325	Full Cohort		Inverse Probability Weighted Cohort		
Baseline Characteristics	Non-CTX-M (n=32)	CTX-M (n=364)	Weighted Non- CTX-M (%)	Weighted CTX-M (%)	Standardized Mean Difference
Age, median (IQR)	52.2 (33.5-75.8)	61.9 (47.9-73.3)	39.7 (32.6-70.7)	61.8 (47.4-73.3)	-
Age ≥ 65 years, n (%)	14 (43.8)	159 (43.7)	(20.1)	(20.93)	1050117
Male sex, n (%)	20 (62.5)	186 (51.1)	(39.4)	(24.7)	
Severe immunocompromise, n (%)	8 (25.0)	117 (32.1)	(18.4)	(15.2)	.0744809
ICU, n (%)	18 (56.3)	182 (50.0)	(28.4)	(24.2)	.0729625
Pitt Bacteremia Score ≥ 4 on day 1, n (%)	9 (28.1)	89 (24.4)	(15.7)	(11.9)	.1153025
Charlson comorbidity index ≥ 5 on day 1, n (%)	13 (40.6)	172 (47.3)	(20.8)	(22.4)	1431494
Source of bacteremia, n (%)	j				
Intra-abdominal	8 (25.0)	110 (30.2)	(8.8)	(15.1)	220
Respiratory	4 (12.5)	17 (4.7)	(1.5)	(2.4)	 8
Skin or soft skin	2 (6.3)	22 (6.0)	(2.0)	(2.9)	
Urinary tract	7 (21.9)	184 (50.5)	(27.5)	(23.1)	.0888232
Source control by end of antibiotic therapy, n (%)	24 (75.0)	317 (87.1)	(44.0)	(41.1)	0472916
Carbapenem administered as culture-directed therapy, n (%)	22 (68.8)	335 (92.0)	(48.1)	(43.3)	.0341912
Community-acquired organism group, n (%)	27 (84.4)	335 (92.0)	(51.1)	(46.3)	0267189

Molecular Epidemiology						
Organism	No ESBL Gene (n=104; 20.8%) ¹	ESBL Family ²				
Organism		CTX-M (n=370)	OXY (n=12)	SHV (n=16)	VEB (n=5)	
Enterobacter cloacae complex	43 (41.33)	5 (1%)	0	3 (19%)	0	
Escherichia coli	22 (21.2)	265 (72%)	0	0	0	
Klebsiella aerogenes	14 (13.5)	3 (<1%)	0	1 (6%)	0	
Klebsiella oxytoca	1 (.96)	5 (1%)	12 (100%)	1 (6%)	0	
Klebsiella pneumoniae	4 (3.8)	88 (24%)	0	10 (63%)	0	
Proteus mirabilis	1 (.96)	3 (<1%)	0	0	5 (100%)	
Providencia stuartii	0	1 (<1%)	0	0	0	
Serratia marcescens	8 (7.7)	0	0	1 (6%)	0	

1- - ----

Most Common Serotypes by Organism

Organism	Serotype	Frequency
	131	168
E. coli	648	13
	69	7
	1193	7
	410	5
	93	1
	307	18
	17	9
K.	348	9
	405	8
pneumoniae	93	6
	15	4
	628	5
K. aerogenes	15	1