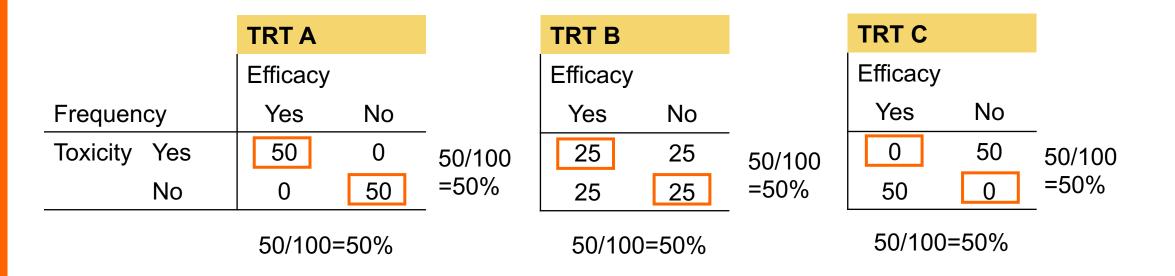
Milken Institute SchoolTHEof Public HealthBIOSTATISTICSTHE GEORGE WASHINGTON UNIVERSITYCENTER

Toshimitsu Hamasaki, PhD, MS, Pstat®

The Biostatistics Center | Department of Biostatistics and Bioinformatics Milken Institute School of Public Heath | The George Washington University

On be half of the GWU DOOR Research Team Weixiao Dai; Guoqing Diao; Scott R. Evans; Yijie He, Lizhao Ge; Richard Shu; Qihang Wu; Shanshan Zhan

- The Desirability of Outcome Ranking Methodology (DOOR) methodology: Motivation
- Development of DOOR outcomes
- Online tool for DOOR analyses
- Online tool for clinical trial designs
- Summary


Research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number UM1AI104681. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

The Desirability Of Outcome Ranking (DOOR) methodology

Patient-centric, benefit:risk evaluation

- A paradigm for the design, monitoring, analysis, interpretation and reporting of clinical trials and other research studies based on patient-centric benefit:risk evaluation (Evans et al 2015; Evans and Follmann 2016).
 - "Using Outcomes to Analyze Patients" rather than "Patients to Analyze Outcomes"
 - Motivated by how to answer the most important question in treating patients in clinical practice

The DOOR outcomes Development of DOOR outcomes

- Overall ordinal composite outcome of important clinical outcomes
 - Tradeoffs among outcomes
 - Cumulative nature of benefits and harms on patients
- The ARLG Innovation Working Group
 - Proposed the DOOR outcomes for ABSSSI; Bacteremia; cIAI; cUTI; HABP/VABP
 - Applied DOOR outcomes to registrational trials in cUTI and HABP/VAB (Howard-Anderson et al. 2023a, b)
 - Collaborated with FDA Antibacterial Drug Resistance (DOOR) Fellowship: Evaluated the DOOR based on data from registrational trials in cIAI submitted to FDA (Kinamon et al. 2023)

- □ Absence of Clinical Response
- □ Infectious Complications
- Serious Adverse Events (SAEs)
- Death

Howard-Anderson J et al. Clin Infect Dis 2023a; 76:1157-1165. Howard-Anderson J et al. Clin Infect Dis 2023b: ciad5760. Kinamon T et al. Clin Infect Dis 2023;77:649-656

DOOR outcome analyses

ARLG recommendations: Simple, robust approach

Analysis	Outcome	Statistical method
Descriptive analysis	DOORComponents	 Summary distribution table by intervention group Bar-chart by intervention group
	 DOOR and Components 	 Anthology of Patient Stories (APS) plot
Rank-based analysis: DOOR	DOORComponents	 Forest Plot of estimates of the DOOR probability for the DOOR and respective components
probability	 DOOR 	 Forest plot of the estimates for the cumulative DOOR probability based on sequential dichotomization of the DOOR outcome
Grade-based Analysis: Partial Credit	• DOOR	 Welch's t-statistic based analysis Scatter plot of the differences in mean partial credit between interventions against the corresponding DOOR probabilities

Online tools for implementing DOOR analyses

DOOR apps

	Standard Edition	Professional Edition
Data Input	Summary table by group	Individual patient-level data
Analysis		
 Descriptive analysis Summary table Bar-chart Anthology of patient stories plot 		
 Rank-based analysis DOOR prob forest plot Dichotomized DOOR prob forest plot 		
 Grade-based analysis Partial credit analysis summary Partial credit vs DOOR prob plot Partial credit forest plot 		
4. Tie-breaker analysis		
5. Inverse probability weighting		
Labels customization, Data save		

Online tools for implementing DOOR analyses: Standard edition

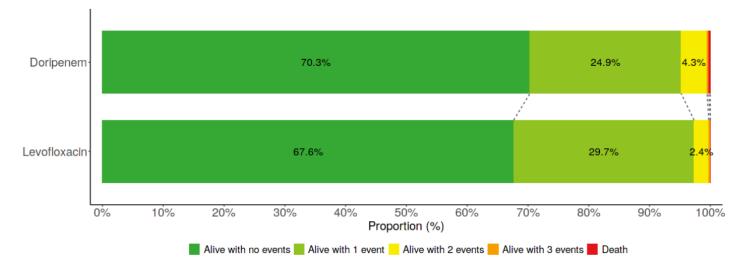
Autofill the ARLG-proposed or other DOOR outcomes

DOOR Analyses: Standard Edition Data Input Table	 DOOR Distribution Summary Table 	Pre-specified Settings	
Pre-specified Settings Default •		Default •	
Data Format Frequencies (N) Percentages (%) # of DOOR Ranks (Maximum: 10) 5 # of DOOR Components (Maximum: 10) 4 Test Intervention Label Treatment	DOOR (Most des rable to	ARLG cUTI; HABP/VABP; ABSSSI; Bacteremia Prioritized efficacy; Prioritized safety Phage cIAI (FDA)	(%)
Control Intervention Label Control Method for Confidence Interval (CI) Halperin et al (1989) Pseudo-Score Approach for Halperin et al (1989) Confidence Level for Two-sided Confidence Interval		HABP/VABP (FDA) STROKE Modified Rankin Scale for Neurologic Disability (6-level) Modified Rankin Scale for Neurologic Disability (7-level)	0)
0.5 0.73 0.5 0.00 <td></td> <td>CANCER Karnofsky Performance Status Scale</td> <td></td>		CANCER Karnofsky Performance Status Scale	
1 Second		EXAMPLES DORI-05 ACTT	

Online tools for implementing DOOR analyses: Standard edition

DOOR apps: Data Input

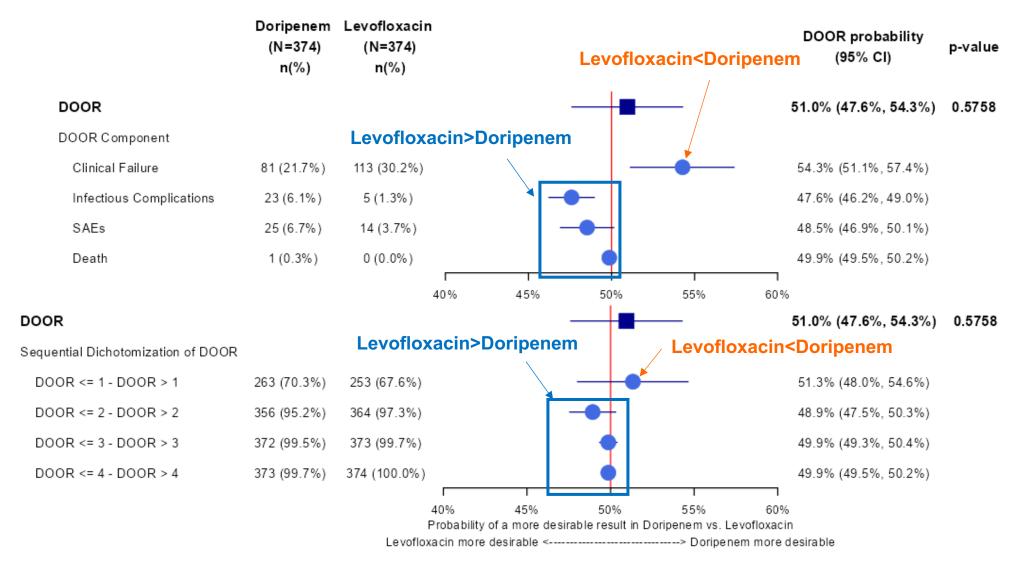
	DOOR	Distribution by Intervention	
Pre-specified Settings Default	DOOR (Most desirable to least desirable) Rank	Doripenem	Levofloxacin
Data Format Frequencies (N) Percentages (%)	Alive with no events	263	253
# of DOOR Ranks (Maximum: 10)	Alive with 1 event	93	111
5	Alive with 2 events	16	9
# of DOOR Components (Maximum: 10)	Alive with 3 events	1	1
Test Intervention Label	Death	1	0
Treatment	Total (N)	374	374
Control Intervention Label Control		074	074
Method for Confidence Interval (CI) Halperin et al (1989) Pseudo-Score Approach for Halperin et al (1989) Confidence Level for Two-sided Confidence Interval 		onents Distribution by Interv Doripenem	rention Levofloxacin
0.5	DOOR Component	Doripenem	Levonoxacin
	Clinical Failure	81	113
Unit for Expected Gained (+) or Loss (-)	Infectious Complications	23	5
# of Grading keys (Maximum: 7)	SAEs	25	14


Howard-Anderson J, et al. Improving Traditional Registrational Trial End Points: Development and Application of a Desirability of Outcome Ranking End Point for Complicated Urinary Tract Infection Clinical Trials. Clin Infect Dis 2023 76:1157-1165.

An Illustration: DORI05- Doripenem vs Levofloxcin in cUTI

Descriptive analysis: DOOR outcome distribution by intervention group

		Dori	penem			Levo	loxacin			
			Cum	ulative			Cum	ulative	Expected Gained (+)	or Loss (-) (per1000)
DOOR	n	(%)	n	(%)	n	(%)	n	(%)	Per Category	Cumulative
Alive with no events	263	70.3	263	70.3	253	67.6	253	67.6	27	27
Alive with 1 event	93	24.9	356	95.2	111	29.7	364	97.3	-48	-21
Alive with 2 events	16	4.3	372	99.5	9	2.4	373	99.7	19	-3
Alive with 3 events	1	0.3	373	99.7	1	0.3	374	100.0	0	-3
Death	1	0.3	374	100.0	0	0.0	374	100.0	3	0
Total (N)	374				374					



Howard-Anderson J, et al. Improving Traditional Registrational Trial End Points: Development and Application of a Desirability of Outcome Ranking End Point for Complicated Urinary Tract Infection Clinical Trials. Clin Infect Dis 2023 76:1157-1165.

An Illustration: DORI05

Rank-based analysis: Forest plot of the DOOR and respective components

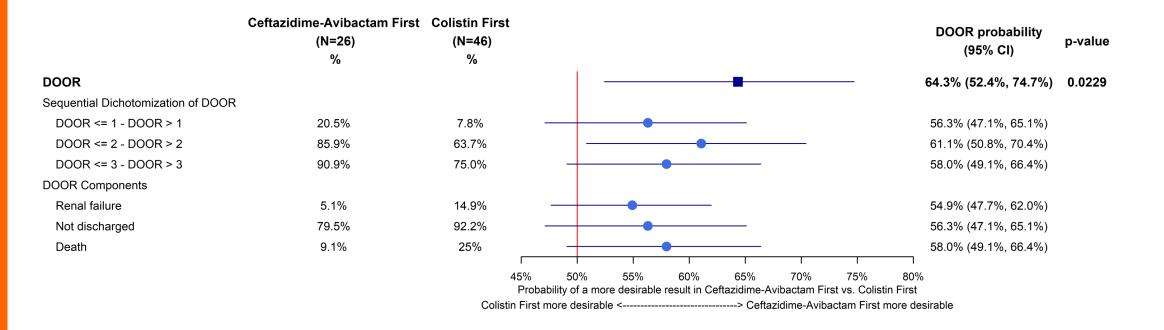
Howard-Anderson J, et al. Improving Traditional Registrational Trial End Points: Development and Application of a Desirability of Outcome Ranking End Point for Complicated Urinary Tract Infection Clinical Trials. Clin Infect Dis 2023 76:1157-1165.

An Illustration: DORI05

Grade-based analysis: Partial credit analysis summary

DOOR (Most desirable to least

desirable)	Gradin	g key 1	Gradin	g key 2	Gradin	g key 3	Grading	g key 4	Gradin	g key 5
Alive with no events	1(00	1	00	1(00	10	00	1(00
Alive with 1 event	1(00	1	00	1(00	C)	8	0
Alive with 2 events	1(00	1	00		0	C)	6	0
Alive with 3 events	1(00		C	(0	C)	4	0
Death	(C		C	(0	C)	()
Statistics	DOR	LEV	DOR	LEV	DOR	LEV	DOR	LEV	DOR	LEV
Mean (SD)	99.7(5.2)	100.0(0.0)	99.5 (7.3)	99.7 (5.2)	95.2 (21.4)	97.3 (16.2)	70.3 (45.7)	67.6 (46.8)	92.9 (12.4)	92.9 (10.8)
Diff. in means(95%CI)	-0.3 (-0	0.8, 0.3)	-0.2 (-1	.2, 0.6)	-2.1 (-4	.9 , 0.6)	2.7 (-4.	0 , 9.3)	0.0 (-1.	7,1.6)
P-value	0.3	180	0.5	635	0.1	237	0.42	299	0.9	500
DOOR probability (%) (95%Cl)	49.9 (49	.5 , 50.2)	49.9 (49	0.3, 50.4)	48.9 (47	7.5, 50.3)	51.3 (48	.0, 54.6)	51.0 (47	.6, 54.3)
P-value	0.3	173	0.5	632	0.1	236	0.42	296	0.5	758


DOR: Doripenem; LEV: Levofloxacin

An Illustration: CRACKE I- Colistin versus Ceftazidime-Avibactam in CRE

IPW analysis using the Professional Edition

Inverse Probability Weighted (IPW) Analysis

van Duin D et al. Colistin versus Ceftazidime-Avibactam in the Treatment of Infections Due to Carbapenem-Resistant Enterobacteriaceae. Clin Infect Dis. 2018; 66:163-171. **Rank 1**. Discharged home; **Rank 2**. Alive in hospital or discharged not to home, no incident renal failure; **Rank 3**. Alive in hospital or discharged not to home, incident renal failure: **Rank 4**. Hospital death

Designing a clinical trial with DOOR methodology

A tool for power and sample size assessment: Data input

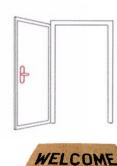
	DOOR: Power and Sample Size Assess	ment ≡							
ļ	Assessment DOOR Pr	robability <mark>to Bo Detector</mark>			Confirmentions (Contrine	7			
	Configurations/Settings					ted			
	One or Two-sided Test One-sided Two-sided Significance Level (α) 0.05		DOOR Probability of Null Hyp 50 Method Iterative Method Method by Tang (2011)	oothesis (%)		ined by ategory Proporti	ions		
	Allocation Ratio 0.5 Desired Power (1-β) (%) 80		Method by Noether (1987)			ervention t desirable)	Calculated	DOOR Proba	bility (%)
	Total Sample Size	Cest ↓	\$	Control	\$))			
	Power Evaluation by Simulation No Yes))()			

Designing a clinical trial with DOOR methodology

A tool for power and sample size assessment: Output

he null hypothesis: the DOOR probability = 50.0%, assuming that a value of DOOR probability to be detected is 59.0%, based on the proportions of DOOR outtrome with 3 ranks shown below, for a two-sided Will coon-Mann-Whitney test at 5.0% significance evel, using the method in Tang (2011).	A sample size of 131 in Test and 131 in Control (in total 262) has 80.3 % power to reject		Generate
It It <th< th=""><th>probability to be detected is 59.0%, based on the proportions of DOOR outcome with 3 ranks shown below, for a two-sided Wilcoxon-Mann-Whitney test at 5.0% significance level, using the method in Tang (2011).</th><th></th><th>Download</th></th<>	probability to be detected is 59.0% , based on the proportions of DOOR outcome with 3 ranks shown below, for a two-sided Wilcoxon-Mann-Whitney test at 5.0% significance level, using the method in Tang (2011) .		Download
to 30 0 0 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0<	ge of Total Sample Size Increment by		Download
			• Bonnoud
			Dower (%)
100 110 44.2 100 120 47.5 100 130 50.6 100 150 56.5 100 56.5 160 59.2 100 100 59.2 160 59.2 100 100 61.8 160 59.2 100 100 64.3 160 64.3		Total Sample Size	+ Fower (70)
		•	
	.0%	100	40.9
0% 150 56.5 0% 160 59.2 170 61.8 180 64.3		100	40.9 44.2
.0% .160 .59.2 .0% .170 .61.8 .0% .180 .64.3		100 110 120	40.9 44.2 47.5
.0% 100 59.2 170 61.8 180 64.3	.0%	100 110 120 130	40.9 44.2 47.5 50.6
.0%	.0%	100 110 120 130 140	40.9 44.2 47.5 50.6 53.6
180 64.3		100 110 120 130 140 150	40.9 44.2 47.5 50.6 53.6 56.5
90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310		100 110 120 130 140 150 160	40.9 44.2 47.5 50.6 53.6 56.5 59.2

- **DOOR outcome**: A global composite benefit:risk outcome at individual patients level, constructed on the basis of important clinical outcomes
- Analyses: Simple, Robust approach
 - Rank-based analysis approach: DOOR probability Pairwise comparison at individual patient level
 - Grade-based analysis approach: Evaluation of the impact of interventions based on patients' personal perspectives on the desirability of the DOOR outcome categories
 - Visualizes the impact of each category on the DOOR outcomes
 - > Can incorporate patient preferences into treatment selections



Summary Online tools for DOOR Methodology

- Statistical methods for analyzing DOOR outcomes require mathematical sophistication and knowledge of programming techniques, which can be a barrier for non-statisticians.
- A series of interactive web-based tool provide comprehensive tool for clinical researchers to implement DOOR methodology for their studies
- More to come!
 - Monitoring of clinical trials, including group-sequential and adaptive designs
 - □ Integrated analyses: meta-analysis
 - Covariate-adjusted analysis: stratified analysis
 - Subgroup analysis
 - Longitudinal time-to-event type DOOR outcomes

Milken Institute School THE of Public Health BIOSTATISTICS CENTER THE GEORGE WASHINGTON UNIVERSITY

The DOOR is Open! **THANK YOU**

I G

Toshimitsu Hamasaki

@ToshimitsuHama1 ⊠ thamasaki@gwu.edu 𝗞 https://methods.bsc.gwu.edu/ Milken Institute School
of Public HealthTHE
BIOSTATISTICS
CENTER

BACKUP

DOOR analyses

Concerns on common analyses for ordinal outcomes in clinical trials

Analysis	Feature	Concern
Dichotomized analysis	 An ordinal outcome is dichotomized to a binary outcome with a specified threshold (Ex. responder vs non- responder) Logistic-regression is then used to estimate the odds ratio and associated confidence interval of responder between groups as a measure of the treatment effect. 	 May be inefficient from the statistical perspective due to the loss of information from ignoring finer but important gradations of patient status. May lead to decreased power or a necessary sample size increase to maintain power
Regression model based analysis	• A proportional-odds regression model is used to estimate the odds ratio and associated confidence interval across all the categories (common odds ratio) as a measure of the treatment effect	 Fail to provide intuitive interpretations, which helpful for clinical decision-making. Require the model's assumptions, sometimes strong assumptions to hold in order for model-based inferences to be valid.

Creating a DOOR outcome

ARLG proposed DOOR outcomes

- Absence of Clinical Response
- Serious Adverse Events
- Infections complications
- Death

If an newly developed infectious complication is an SAE, then the event is counted twice in deriving the DOOR outcome.

Disease	Infectious Complications
ABSSSI	Unplanned surgical for progression/ complication of original infection; Bacteremia; Septic shock; Osteomyelitis; <i>c.diff</i>
Bacteremia	Septic shock; Prolonged bacteremia on Day 5; Supportive complications or monastic site(s) of infection; <i>c.diff</i>
 cIAI	Bacteremia; Septic shock; Peritonitis; Unplanned surgical for progression/ complication of original infection; <i>c.diff</i>
cUTI	Renal or intra-abdominal abscess; Septic shock; Bacteremia; Unplanned surgical for progression/ complication of original infection; <i>c.diff</i>
HABP/VABP	Complicated pleural effusion; Lung abscess/necrotizing pneumonia; ARDS; Meningitis; Bacteremia; Septic shock; Need for intubation; <i>c.diff</i>