Epidemiology and Management of Carbapenem-Resistant Acinetobacter baumannii (CRAB)

Keith S. Kaye, MD, MPH Chief, Division of Allergy, Immunology and Infectious Diseases Professor of Medicine Rutgers, Robert Wood Johnson Medical School New Brunswick, NJ

Disclosures

- Consultant: Shionogoi, Merck, Qpex, Allecra, Venatorx, AbbVie, Spero, Entasis
- Grant Support: NIH, AHRQ

Objectives

- Prevalence and impact
- Mechanisms of resistance
- Approaches to treatment
- What the future holds

CDC: Drug-Resistant Gram-Negative Bacterial Infection Threats

Urgent and Serious GNR Threats Carbapenem-resistant Acinetobacter (urgent) Carbapenem-resistant Enterobacteriaceae (urgent) ESBL-producing Enterobacteriaceae (serious)

Multidrug-resistant Pseudomonas aeruginosa (serious)

WHO Priority Pathogens List For R&D of New Antibiotics

Priority 1: Critical

Acinetobacter baumannii, carbapenem-resistant

Pseudomonas aeruginosa, carbapenem-resistant

Enterobacteriaceae*, carbapenem-resistant, 3rd generation ceph-resistant

Acinetobacter baumannii – Carbapenem-Resistant

CARBAPENEM-RESISTANT ACINETOBACTER

THREAT LEVEL URGENT

URGENT

8,500 Estimated cases in hospitalized patients in 2017

\$281M Estimated attributable healthcare costs in 2017

Acinetobacter bacteria can survive a long time on surfaces. Nearly all carbapenem-resistant Acinetobacter infections happen in patients who recently received care in a healthcare facility.

ANTIBIOTIC RESISTANCE THREATS IN THE UNITED STATES, 2019, CDC.GOV

The rates of hospital-onset carbapenem-resistant *Acinetobacter* cases decreased 2012-2017, began to plateau, then increased 78% in 2020.

Data from 2018-2020 are preliminary.

https://www.cdc.gov/drugresistance/covid19.html

Gram-negative Pathogens: Change in Rates from 2019-2020

https://www.cdc.gov/drugresistance/pdf/covid19-impact-report-508.pdf

Gram-Negative Bacteria

4 out of top 6 pathogens leading to death from AMR were Gram-negative

Murray CJ,. The Lancet. 2022;399(10325)

esistant A.

the fourth

of death

baumannii is

leading cause

attributable to

antimicrobial

resistance

globally

Carbapenem-Resistant A. baumannii (CRAB)

- Mechanisms of resistance to antimicrobials multiple, diverse; carbapenem resistance often driven by carbapenemases
 - Porin mutations
 - Altered PBPs
 - Metallo-beta-lactamases, serine carbapenemases (OXA)
 - OXA-23-like, OXA-24/40-like, OXA-51-like, OXA-58-like
- Carbapenem resistance seen in multiple geographic locales worldwide
- Problem pathogen in ICU patients (particularly in burn units), elderly and combat injuries from middle east
- Can cause hospital outbreaks

Landman, JAC, 2007; Ahmed et al, Journal of Pure and Applied Microbiology, 2016, 1675-1682; https://arpsp.cdc.gov/story/cra-urgent-public-health-threat

Role of Sulbactam

- SUL competitively and irreversibly binds to PBPs at high doses against A. baumannii¹
 - Not interchangeable with other β-lactamase inhibitors
- Retains activity against some strains that produce OXA-23²
- Ampicillin/SUL MICs = surrogates for SUL activity if susceptible (≤8/4 mg/L), but not when resistant²
 - Ampicillin/SUL 3 g q6hr over 1 hr: >90% probability of achieving 40% *f*T > MIC for isolates with MICs ≤16 mg/L
 - 6-12 g SUL per day can result in adequate exposure for MICs 16-32 mg/L
- SUL being developed in combination with durlobactam⁶

1. Wang. Infect Drug Resist. 2021;14:3971. 2. Abdul-Matakabbir. Infect Dis Ther. 2021;10:2177. 3. Lenhard. Antimicrob Agents Chemother. 2017;61:e01268-16. 4. Betrosian. Scan J Infect Dis. 2007;39:38. 5. Jaruatanasirikul. Eur J Pharm Sci. 2019;136:104940. 6. NCT03894046.

CRAB Often Resistant To Other Antibiotics

PERCENT OF GERMS THAT TESTED NON-SUSCEPTIBLE (NOT SENSITIVE) TO OTHER TYPES OF ANTIBIOTICS

Select Antibiotics	2013	2014	2015	2016	2017	
Any fluoroquinolone	98%	93%	97%	92%	89%	
Any extended-spectrum β-lactam	80%	75%	81%	79%	75%	0
Ampicillin/sulbactam	62%	62%	59%	64%	61%	
Trimethoprim/ sulfamethoxazole	84%	74%	81%	77%	66%	~

ANTIBIOTIC RESISTANCE THREATS IN THE UNITED STATES, 2019, CDC.GOV

New(er) Approved Therapies – B-lactam/B-lactam Inhibitor Combinations

Agent	МоА	proved Indications	In Vitro Activity		Treatment Niche
Ceftolozane/ tazobactam	Novel cephalosp β-lactam inhibito	vith vole	 E: TEM P: A 		Pseudomonas aeruginosa, including XDR rains
Ceftazidime/ avibactam	Cephalosporin/ novel β-lactamase inhibitor	• D-	rD loss	•	CRE – KPC, OXA-48 <i>P. aeruginosa</i>
Meropenem/ vaborbactam	Carbapenem/ novel β-lactam inhibitor			•	CRE- KPC
lmipenem/ relebactam	Carbapen novel β-lactamase inhibitor	Al HABP/VABP	 E: certain P: AmpC 		CRE-KPC <i>P. aeruginosa</i> including some XDR strains

*E, Enterobacteriaceae; P, P. aeruginosa

Ceftolozane/tazobactam [package insert]. November 2016. Ceftazidime/avibactam [package insert]. February 2018. Meropenem/vaborbactam [package insert]. April 2018. Imipenem/relebactam [package insert]. July 2019.

New BLI Agents...Don't Help

- Carbapenem-resistant largely mediated by carbapenemases
 - Primarily Class D Oxacillinases
 - Growing reports of class B NDM-1 enzymes
- These enzymes readily hydrolyze cephalosporins and carbapenems
- Neither tazobactam, avibactam, vaborbactam, nor relebactam inhibit these enzymes....

Wang et.al. Antimicrob Agents Chemother. 2014;58(3):1774-8.; Yoshizumi A et.al.J Infect Chemother. 2015;21(2):148-51

Are Polymyxins Still the Mainstay of CRAB Treatment?

- These drugs have lots of issues
 - PK concerns (poly B more straightforward)
 - Nephrotoxicity in the 30 50% range
 - Particular concerns in pneumonia
- The inability to safely achieve therapeutic targets often leads to combination therapy
 - Evidence to support is lacking
 - ACTIVE second agent might be the key
 - Extrapolate from the CRE experience

OVERCOME: Colistin alone vs Colistin + Meropenem

Primary outcome: 28-day mortality

	Colistin + Placebo (%)	Colistin + Meropenem (%)	P value
Overall	92/213 (43)	77/210 (37)	0.17
Pneumonia	69/152 (45)	59/146 (40)	0.39
BSI	23/61 (38)	18/64 (28)	0.25
A. baumannii	76/165 (46)	69/164 (42)	0.47
P. aeruginosa	10/23 (43)	5/20 (25)	0.21
CRE	11/34 (32)	6/35 (17)	0.14

Kaye et al, NEJM Evidence, 2022

Tetracyclines: Important Rx Considerations for CRAB

- Minocycline
 - Shows good activity against *A. baumannii* (including CRAB)
 ~75% susceptible; But breakpoint likely off (breakpoint is 4; recent data suggest that 0.5-1 is more accurate)
 - Clinical evidence limited, but encouraging
- Tigecycline
 - Serum and epithelial lining fluid concentrations suboptimal
 - Experience as monotherapy conflicting resistance development, clinical failures
- Eravacycline
 - Potency advantage over tigecycline
 - Recent PK/PD data suggest that breakpoint is too high
 - More evidence needed; do not overreact to lower MICs

Cefiderocol: Activity against CRAB

	MIC (mg/L)			Resistance (%)		
Species/antibiotic	MIC range	MIC ₅₀	MIC ₉₀	S	Ι	R
A. baumannii (n=107)						
cefiderocol	≤0.03-2	0.06	0.5	NA	NA	NA
meropenem	8->64	64	>64	0	0	100
ceftazidime	8->64	>64	>64	0.9	5.6	93.5
cefepime	8->16	>16	>16	5.6	7.5	86.9
ceftazidime/avibactam	0.25->64	32	64	NA	NA	NA
ceftolozane/tazobactam	2->64	32	>64	NA	NA	NA
aztreonam	8->32	>32	>32	NA	NA	NA
amikacin	8->64	>64	>64	6.5	5.6	87.9
ciprofloxacin	≤0.25->4	>4	>4	2.8	0	97.2
colistin	≤0.5->8	1	8	57.9	0	42.1
tigecycline	≤0.25-4	1	2	NA	NA	NA

Falagas et al. J Antimicrob Chemother. 2017 Jun 1;72(6):1704-1708

Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): a randomised, double-blind, phase 3, non-inferiority trial

Richard G Wunderink, Yuko Matsunaga, Mari Ariyasu, Philippe Clevenbergh, Roger Echols, Keith S Kaye, Marin Kollef, Anju Menon, Jason M Pogue, Andrew F Shorr, Jean-Francois Timsit, Markus Zeitlinger, Tsutae D Nagata

	Cefiderocol (n=145)	Meropenem (n=147)	Treat	ment difference (9	5% CI)
Clinical cure					
All patients	94/145 (65%)	98/147 (67%)	-1.8	(-12·7 to 9·0)	
HAP	33/59 (56%)	41/60 (68%)	-12.4	(-29·7 to 4·9)	
VAP	39/59 (66%)	36/64 (56%)	9.9	(-7·3 to 27·0)	
НСАР	22/27 (82%)	21/23 (91%)	-9.8	(-28.5 to 8.8)	
Top five baseline pathogens					
Klebsiella pneumoniae	31/48 (65%)	29/44 (66%)	-1.3	(-20.8 to 18.1)	
Pseudomonas aeruainosa	16/24 (67%)	17/24 (71%)	-4.2	(-30.4 to 22.0)	
Acinetobacter baumannii	12/23 (52%)	14/24 (58%)	-6.2	(-34.5 to 22.2)	
Escherichia coli	12/19 (63%)	13/22 (59%)	4.1	(-25.8 to 33.9)	
Enterobacter cloacae	5/7 (71%)	4/8 (50%)	21.4	(NA)	
	All-Cause	e Mortality	/	· · · · ·	
5 baseline pathogens					
iella pneumoniae	F		5/48 (10%)	5/44 (11%)	-0.9 (-13.7 to 11.8
omonas aeruginosa			2/24 (8%)	3/23 (13%)	-4.7 (-22.4 to 12.9
obacter baumannii	+ -		5/23 (22%)	4/24 (17%)	5.1 (-17.4 to 27.6
ichia coli		<u> </u>	4/19 (21%)	3/22 (14%)	7.4 (-15.9 to 30.7
bacter cloacae			0/7 (0%)	1/8 (13%)	-12.5 (-35.4 to 10.4
penem MIC*					
g/mL	I		9/91 (10%)	10/90 (11%)	-1·2 (-10·2 to 7·7)
ı/mL	<u> </u>		6/30 (20%)	5/26 (19%)	0·8 (-20.1 to 21·6
ıg/mL ∎		1	5/27 (19%)	5/24 (21%)	-2·3 (-24·2 to 19·6
g/mL —	•	l.	4/21 (19%)	5/20 (25%)	-6.0 (-31.3 to 19.4
ig/mL	• • • •		1/9 (11%)	5/15 (33%)	-22·2 (-53·/ to 9·3)
-50 -40 -30	-20 -10 0 10 2	20 30 40 50	18/145 (12%)	1//140 (12%)	0.8 (-0.7 to 8.2)

Favours cefiderocol Favours meropenem

Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial

Matteo Bassetti, Roger Echols, Yuko Matsunaga, Mari Ariyasu, Yohei Doi, Ricard Ferrer, Thomas P Lodise, Thierry Naas, Yoshihito Niki, David L Paterson, Simon Portsmouth, Julian Torre-Cisneros, Kiichiro Toyoizumi, Richard G Wunderink, Tsutae D Nagata

	Cefiderocol (n=101)	Best available therapy (n=49)
Acinetobacter spp*	21/42 (50%)	3/17 (18%)
Acinetobacter baumannii	19/39 (49%)	3/17 (18%)
Klebsiella pneumoniae	8/34 (24%)	4/16 (25%)
Without Acinetobacter spp	6/28 (21%)	4/15 (27%)
Pseudomonas aeruginosa	6/17 (35%)	2/12 (17%)
Without Acinetobacter spp	2/11 (18%)	2/11 (18%)
Escherichia coli	1/6 (17%)	0/3
Without Acinetobacter spp	0/3	0/1
Stenotrophomonas maltophilia	4/5 (80%)	NA
Without Acinetobacter spp	2/3 (67%)	NA

Data are n/N (%). NA=not available. *Includes Acinetobacter baumannii (for 39 patients assigned cefiderocol and 17 assigned best available therapy), Acinetobacter nosocomialis (for two patients assigned cefiderocol), and Acinetobacter radioresistens (for one patient assigned cefiderocol).

Table 6: All-cause mortality at the end of study by most frequent baseline pathogen in the safety population

2022 IDSA Guidance: CRAB

CRAB Infection	Preferred	Notes
Mild	 Single-agent: high-dose ampicillin/sulbactam (when pathogen is susceptible) 	 Polymyxin B (colistin for cystitis), tetracycline (eg, minocycline or tigecycline) or cefiderocol monotherapy may be considered
Moderate to severe	 Combination of ≥2 active agents (even if a single agent demonstrates activity), including High-dose ampicillin/sulbactam Polymyxin B Extended-infusion meropenem Tetracycline (minocycline, tigecycline; little data for eravacycline) 	 Nebulized antibiotics are not recommended for respiratory infections Meropenem plus polymyxin without third agent is not recommended Rifamycin is not recommended
Refractory to other antibiotics	 Cefiderocol as part of a combination regimen 	 Also recommended if patient is intolerant of other treatment options

 If nonsusceptibility to ampicillin/sulbactam is demonstrated, high-dose ampicillin/sulbactam may remain an effective treatment; addition of a second active agent is recommended, including mild infection.

idsociety.org/practice-guideline/amr-guidance-2.0/

Sulbactam-Durlocbactam to the Rescue?

Sulbactam

- Penicillin derivative with intrinsic activity against ABC
- β-lactamase–mediated resistance is common (MIC₉₀ 64 mg/L; N = 4252 global clinical isolates)

- Diazabicyclooctane β-lactamase inhibitor
- Potent inhibitor of class A, C, and D β-lactamases
- Restores sulbactam activity in vitro and in vivo

Antimicrobial Resistance Collaborators. *Lancet.* 2022;399:629-655; Shapiro AB et al. *Front Microbiol.* 2021;12:709974; Hackel M et al. Presented at ECCMID; April 23-26, 2022; Lisbon, Portugal. Abstract #01106.

ATTACK Study Design

 Phase 3, multinational, randomised, controlled, noninferiority trial conducted to evaluate the efficacy and safety of SUL-DUR versus colistin, both in combination with imipenem/cilastatin as background therapy, for patients with serious infections due to *A. baumannii*, including CRAB strains.

This trial is registered at ClinicalTrials.gov: NCT03894046. Please see ECCMID abstract #02093 for Part B.

aSUL-DUR dosing was adjusted for renal function. Colistin dosing was adjusted to ideal body weight and renal function. A single colistin loading dose of 2.5 to 5 mg/kg given intravenously over 3 to 6 minutes (or according to standard of care) was administered on Day 1 for patients who had not received prior colistin therapy.

BSI, bloodstream infection; CRABC, carbapenem-resistant Acinetobacter baumannii-calcoaceticus complex; HABP, hospital-acquired bacterial pneumonia; IMI, imipenem/cilastatin; <u>a×h</u>, every × hours; TOC, test of cure; VABP, ventilator-associated bacterial pneumonia; VP, ventilated pneumonia.

Presented at 32nd ECCMID, 23–26 April 2022, Lisbon, Portugal

Sul-Dur Achieved Primary Endpoint and Key Secondary Endpoints, All In Patients with CRAB Infections

	Sul-Dur	Colistin	Difference (95% CI)
28-day Mortality CRAB (%)	19.0	32.3	-13.2 (-30.0-3.5)
Clinical Cure (%)	61.9	40.3	21.6 (2.9-40.3)
Nephrotoxicity (%)	13.2	37.6	-24.4 (p=0.0002)

Presented at 32nd ECCMID, 23–26 April 2022, Lisbon, Portugal

CRAB Treatment Summary

- When sulbactam is active, it should be used!
- We are still lacking good treatment options
 Major unmet need
- Polymyxins should be avoided whenever possible
- Tetracyclines encouraging, but lack data and breakpoints are too high/doses are too low
- Cefiderocol should not be relied upon as a single agent
- So what do we do for CRAB (particularly when also resistant to sulbactam)?
 - ? cefiderocol + minocycline (or tigecycline)
- Sul-Dur holds promise for the future

Questions?

