

An Epidemiological Exploration of Reduced Vancomycin Susceptibility in *Clostridioides difficile* and Impact on Patient Outcomes

Taryn A. Eubank, PharmD, BCIDP

T32 Infectious Diseases Fellow 2021 - 2023

Department of Pharmacy Practice and Translational Research University of Houston College of Pharmacy

Clostridioides difficile infection (CDI)

- •The most common hospital-acquired infection in the USA and the leading cause of death due to gastroenteritis^{1,2}
- •Only 2 antibiotics recommended as treatment³
 - Oral vancomycin serves as current mainstay of therapy
- 1. Hall et al. Clin Infect Dis. 2012; 55:216-223.
- 2. Lessa et al. N Engl J Med. 2015; 372:825-834.
- 3. Johnson et al. Clin Infect Dis. 2021; 73:e1029–e1044.

CDC's Antibiotic Resistance Threats in the United States, 2019.

Vancomycin role in CDI

- •Culture and susceptibility testing not routinely conducted for *C. difficile* in clinical practice
- Minimum inhibitory concentration (MIC) of > 2 mg/L considered vancomycin non-susceptible^{1,2}

Hypothesis: Increases in vancomycin use applies a selective pressure expediting resistance development

1. CLSI M11: Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria. 9th edition.

2. EUCAST. Breakpoint tables for interpretation of MICs and zone diameters. Version 12.0, 2022.

3. Saha et al. Anaerobe. 2019; 58:35-46..

Previous surveillance studies

- Vancomycin non-susceptible isolates: 0% 39.1%
- Timeframe: 2011 2022

J Antimicrob Chemother 2020; **75**: 1824–1832 doi:10.1093/jac/dkaa118 Advance Access publication 15 April 2020 Journal of Antimicrobial Chemotherapy

nivma

OXFORD

Antimicrobial susceptibility of *Clostridioides difficile* isolated from diarrhoeal stool specimens of Canadian patients: summary of results from the Canadian *Clostridioides difficile* (CAN-DIFF) surveillance study from 2013 to 2017

James A. Karlowsky^{1,2}, Heather J. Adam^{1,2}, Melanie R. Baxter¹, Christopher W. Dutka¹, Kim A. Nichol², Nancy M. Laing¹, George R. Golding^{1,3} and George G. Zhanel^{1*}

Clinical Infectious Diseases

MAJOR ARTICLE

Reference Susceptibility Testing and Genomic Surveillance of *Clostridioides difficile*, United States, 2012–17

Informatic Discours Society of America

Amy S. Gargis,^{1,2,6} Maria Karlsson,^{1,2,4,6} Ashley L. Paulick,^{1,6} Karen F. Anderson,¹ Michelle Adamczyk,¹ Nicholas Vlachos,¹ Alyssa G. Kent,^{1,5} Gillian McAllister,¹ Susannah L. McKay,¹ Alison L. Halpin,^{1,5} Valerie Albrecht,¹ Davina Campbell,¹ Lauren C. Korhonen,¹ Christopher A. Elkins,^{1,0} J. Kamile Rasheed,¹ Alice Y. Guh,¹ L. Clifford McDonald,^{1,3} Joseph D. Lutgring,^{1,0} and the Emerging Infections Program *C. difficile* Infection Working Group^b

¹Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA, and ²Goldbelt OS, LLC, Chesapeake, Virginia, USA

Antimicrobial resistance surveillance of Clostridioides difficile in Australia, 2015–18 Papanin Putsathit¹, Stacey Hong^{2,3}, Narelle George⁴, Christine Hemphill⁵, Peter G. Huntington⁶, Tony M. Korman⁷, Despina Kotsanas⁷, Monica Lahra⁸, Rodney McDougall⁹, Andrew McGlinchey⁵, Casey V. Moore¹⁰, Graeme R. Nimmo⁴, Louise Prendergast⁵, Jennifer Robson⁹, Lynette Waring⁵, Michael C. Wehrhahn ¹¹, Gerhard F. Weldhagen¹⁰, Richard M. Wilson¹², Thomas V. Riley^{1,2,3,13} and Daniel R. Knight ¹², ^{2,3*} natureresearch

OPEN High prevalence of *Clostridiodes diffiicle* PCR ribotypes 001 and 126 in Iran

Infectious Diseases Society of America

Clinical Infectious Dise.

J Antimicrob Chemother 2021; 76: 1815–1821

doi:10.1093/jac/dkab099 Advance Access publication 25 April 2021

MAJOR ARTICLE

Emergence of Clinical *Clostridioides difficile* Isolates With Decreased Susceptibility to Vancomycin

Charles Darkoh,¹²Kadiatou Keita,³ Chioma Odo,² Micah Oyaro,⁴ Eric L. Brown,¹ Cesar A. Arias,¹²⁵ Blake M. Hanson,¹⁵ and Herbert L. DuPont¹²⁶

¹University of Texas Health Science Center, School of Public Health, Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, Houston, Texas, USA; ²University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Microbiology and Infectious Diseases Program, Houston, Texas, USA; ²Alabama A&M University, Huntsville, Alabama, USA; ⁴University of Nairobi, School of Medicine, College of Health Sciences, Nairobi, Kenya; ⁴Division of Infectious Diseases and Center for Antimicrobial Resistance and Microbial Genomics, UTHealth, McGovern School of Medicine at Houston, Texas, USA; and ⁶Kelsey Research Foundation, Houston, Texas, USA

OXFORD

hey medicine associatio

UNIVERSITY of HOUSTON

COLLEGE OF PHARMACY

Specific Aims

• SA1: Epidemiology of vancomycin non-susceptibility

•SA2: Impact of vancomycin non-susceptibility on patient outcomes

Methods: laboratory

- Multicenter cohort study 2 unique hospital systems within Greater Houston Area
- Adult patients with CDI between 2016 2021

Methods: cohort selection

- Epidemiology cohort: 600 isolates from biobank repository
- Patient outcome cohort: 300 isolates screened for vancomycin monotherapy
 - Monotherapy defined as definitive vancomycin therapy initiated within 48H of positive CDI test
 - Primary outcome: 30-Day sustained clinical response (no diarrhea by day 14, no recurrence by day 30, alive at day 30)

Specific Aims

•SA1: Epidemiology of vancomycin non-susceptibility

•SA2: Impact of vancomycin non-susceptibility on patient outcomes

Epidemiology of vancomycin non-susceptibility

QUANTITATIVE BIOMEDICAL SCIENCES

Geometric mean MICs are increasing over time

Specific Aims

• SA1: Epidemiology of vancomycin non-susceptibility

•SA2: Impact of vancomycin non-susceptibility on patient outcomes

Patient outcome cohort demographics (n=300)

- Male: 71.6% (215/300)
- Mean age: 67 years (18 95)
- Race: White 67.6% (203/300)
- Initial Episode: 72.3% (217/300)

Patient Characteristics	Vancomycin Susceptible (n=198)	Vancomycin Non-susceptible (n= 102)	P value
Male	89 (45%)	42 (41%)	0.533
Age, years (median, IQR)	67 (47 - 87)	70 (50 - 89)	0.100
Charlson Comorbidity Index (median, IQR)	5 (2 – 8)	5 (2 – 8)	0.365
Comorbidities			
Chronic heart failure	33 (16.7%)	29 (28.4%)	0.017
Chronic pulmonary disease	46 (23.2%)	29 (28.4%)	0.288
Chronic liver disease	48 (24.2%)	28 (27.5%)	0.545
Chronic kidney disease	68 (34.3%)	34 (33.3%)	0.861
Diabetes mellitus	79 (39.9%)	33 (32.4%)	0.201
Hx of cerebrovascular accident	38 (19.2%)	12 (11.8%)	0.102
Hx of solid organ transplant	20 (10.1%)	8 (7.8%)	0.524
Hx of hematopoetic stem-cell transplant	4 (2.0%)	2 (2.0%)	0.972
GERD	42 (21.2%)	18 (17.6%)	0.465
Other chronic diarrheal diseases	27 (13.6%)	10 (9.8%)	0.339
Community Hospital	85 (42.9%)	52 (51.0%)	0.185
Hospital system 1	136 (68.7%)	78 (76.5%)	0.158
Hospital system 2	62 (31.3%)	24 (23.5%)	0.158

UNIVERSITY of HOUSTON

COLLEGE OF PHARMACY

Clinical Characteristics	Vancomycin Susceptible (n=198)	Vancomycin Non-susceptible (n= 102)	P value
Initial Episode	146 (73.7%)	70 (68.65)	0.449
≥2 Episode Prior episode within 30d Prior episode within 30 – 90d	11 (5.6%) 13 (6.6%)	11 (10.8%) 6 (5.9%)	0.099 0.818
CDI classification Community onset Healthcare-associated community onset Healthcare onset	60 (30.3%) 49 (24.7%) 89 (44.9%)	23 (22.5%) 30 (29.4%) 49 (48.0%)	0.155 0.385 0.611
2018 IDSA severity index Non-severe Severe Fulminant	98 (49.5%) 90 (45.5%) 10 (5.1%)	57 (55.9%) 40 (39.2%) 5 (4.9%)	0.294 0.302 0.955
ICU within 48h of diagnosis	43 (21.7%)	26 (25.5%)	0.462
Previous oral vancomycin use [¥]	16 (8.1%)	17 (16.7%)	0.024
Days of oral vancomycin therapy (median)	14	14	0.809
Recommended oral vancomycin dose [€]	153 (77.3%)	69 (67.6%)	0.071

[¥]90 days prior to current CDI diagnosis; [€]125 mg four times daily

Vancomycin non-susceptibility was present in most of the common circulating ribotypes

Ribotype	Non-susceptible (no.)	Total (no.)	% NS
F027	41	53	77.4
FP310	5	7	71.4
F255	9	14	64.3
F106	11	31	35.5
F002	8	24	33.3
F087	2	7	28.6
FP502	2	9	22.2
F014-020	5	45	11.1
F001	1	10	10.0
F054	0	7	0.0
All others	12	78	15.4

NS = non-susceptibility

In patients with severe/fulminant disease, <u>30-day</u> sustained clinical response decreased significantly in patients with non-susceptible strains

Vancomycin Susceptible Vancomycin Non-susceptible

Results were confirmed with multivariable regression analysis controlling for patient co-morbid conditions

In patients with severe/fulminant disease, <u>90-day</u> sustained clinical response decreased significantly in patients with non-susceptible strains

Vancomycin Susceptible Vancomycin Non-susceptible

Results were confirmed with multivariable regression analysis controlling for patient co-morbid conditions

Conclusions

- Vancomycin non-susceptible strains are common (29.3%, 176/600)
 - Non-susceptibility is most common within ribotype F027 (78.9%, 75/95)
- There is an observed increase in vancomycin MIC over time
- In patients with severe and fulminant disease, 30- and 90-day sustained clinical response is significantly lower in patients with non-susceptible strains

Next steps & future directions

- Identify risk factors driving vancomycin non-susceptibility
- •Characterize mutations within the *vanG* operon
- Describe *vanG* expression via qPCR
- •Investigate clinical outcomes associated with *vanG* expression

Acknowledgements

- **The Garey Lab** (University of Houston College of Pharmacy, Houston, TX)
 - PI: Dr. Kevin W. Garey, PharmD, MS, BCIDP
- The Hurdle Lab (Texas A&M Health Science Center, Houston, TX)
 - PI: Dr. Julian Hurdle, Ph.D.
- Dr. Barbara W. Trautner, MD, PhD
 - Baylor College of Medicine
- Dr. Blake Hanson, PhD
 - UT Health Sciences Center at Houston

Funding: NIAID, T32 AI141349

