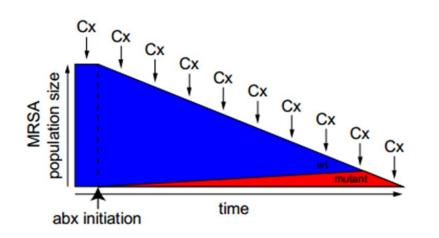
# Within-host evolution of *Staphylococcus aureus* stringent response imparts a fitness advantage under nutrient stress

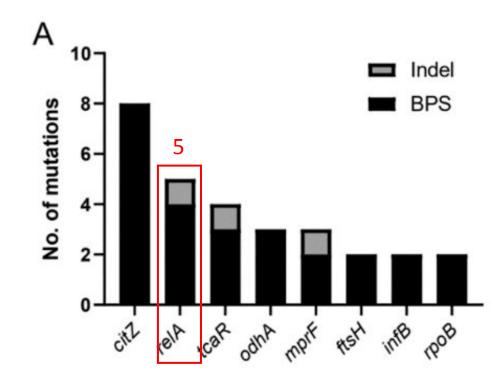
#### Edwin Chen MD PhD

Adult Infectious Diseases Fellow T32 Postdoctoral Trainee Laboratory of Dr. Matthew Culyba University of Pittsburgh

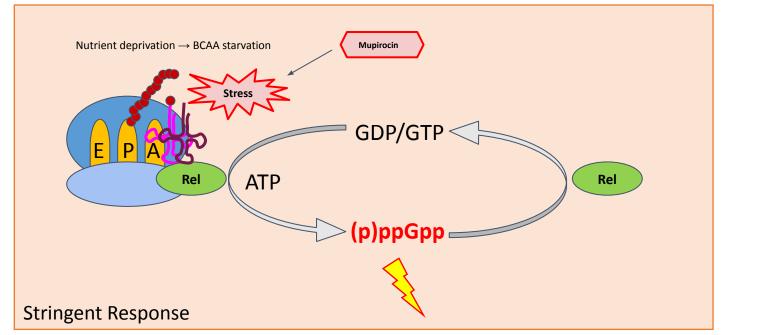
## Invasive MRSA infections are a healthcare threat

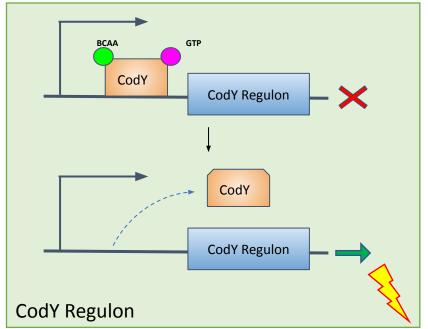



Persistent MRSA bacteremia is common despite appropriate antibiotic selection (Paul 2010, Hawkins 2007, Leibovici 1998) Persistent MRSA bacteremia is associated with a higher mortality:


- 45% for persisters (>7 days) vs 9% for non-persisters (≤3 days) (Yoon 2010)
- 54% for persisters (>7 days) vs 31% for non-persisters (<3 days) (Hawkins 2007)</li>

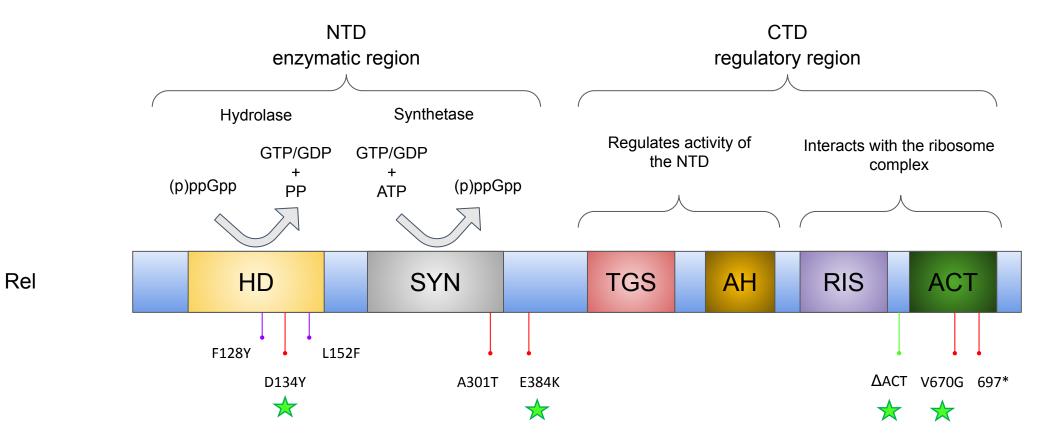
. There is great interest in understanding the mechanism(s) underlying persistent clinical infections.


A forward genetic screen to characterize within-host evolution of *S. aureus* 


Whole-genome sequenced 206 serially positive MRSA blood cultures from 20 patients with persistent clinical infections to identify evidence of within-host evolution.





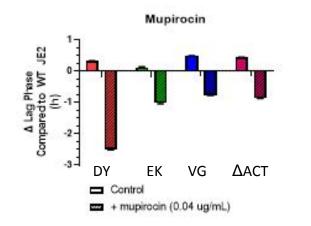

#### The stringent response is a conserved bacterial stress response

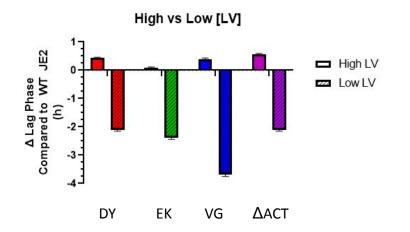






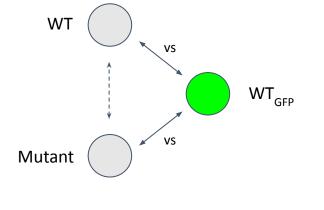
## Rel, the central regulator of the stringent response



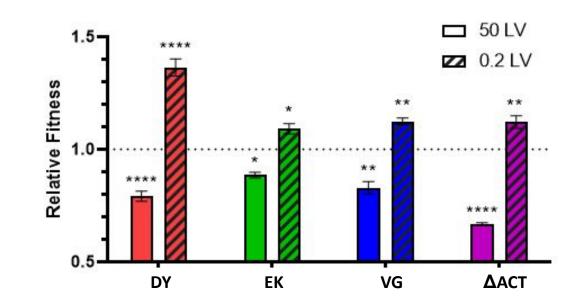


Previously identified clinical *Rel* mutations in persistent Gram(+) infections, found to impart multidrug tolerance

Our newly identified clinical Rel mutations

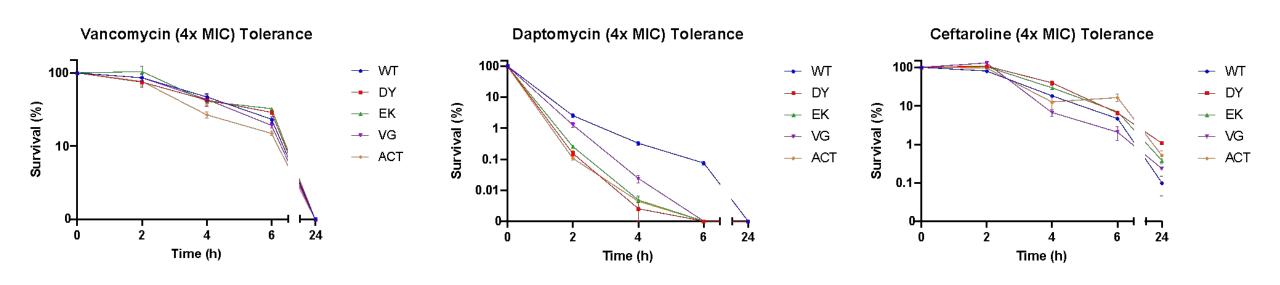
What role do our mutations play in persistent clinical infections?


#### Clinical Rel mutations alter growth





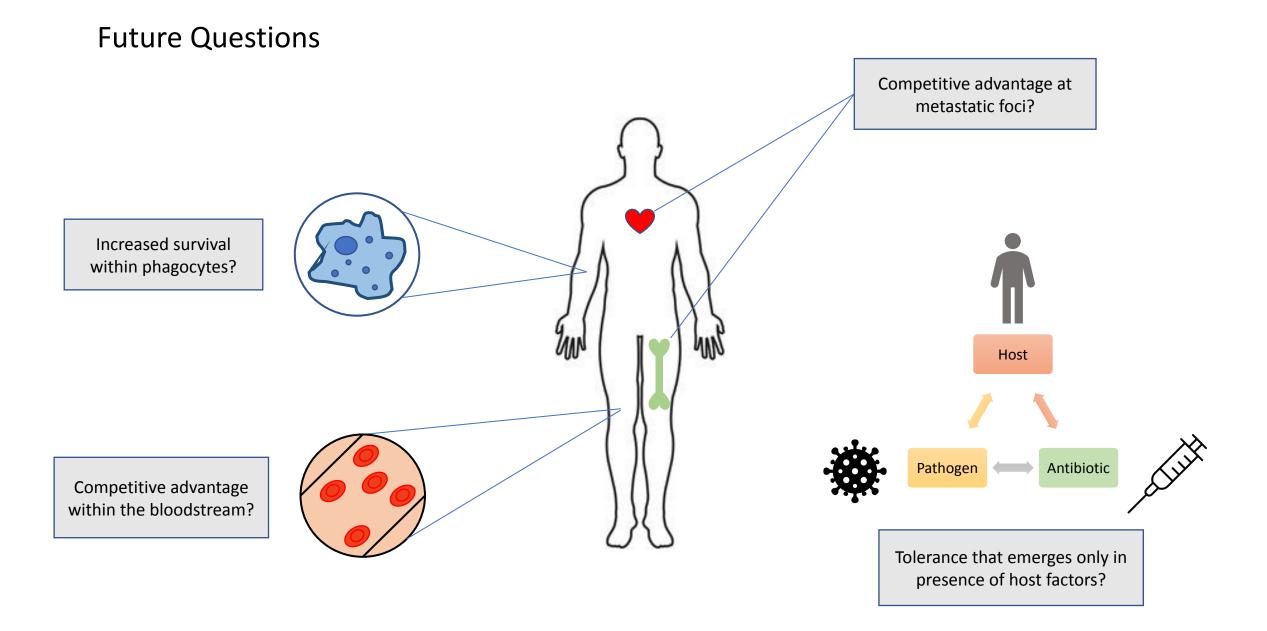

Clinical *Rel* mutations result in an abnormal stringent response phenotype and alter bacterial growth kinetics.


Clinical *Rel* mutations have increased fitness under stringent conditions



 $W = \ln\left(\frac{N_{\rm f}^{\rm dark}}{N_{\rm i}^{\rm dark}}\right) / \ln\left(\frac{N_{\rm f}^{\rm bright}}{N_{\rm i}^{\rm bright}}\right)$ 




Clinical *Rel* mutations do not impart multidrug tolerance



#### Conclusions

- 1. Within-host evolution of the stringent response occurs during persistent MRSA bacteremia.
- 2. We have identified several novel mutations localized throughout the different domains of Rel.
- 3. Our *Rel* mutations impart a competitive fitness advantage under nutrient limiting conditions.
- 4. Our *Rel* mutations results in a diverse tolerance phenotype, *not* multidrug tolerance.

• Our clinical *Rel* mutations highlight the diverse roles the stringent response plays in host-pathogen interactions.



#### Acknowledgements

<u>Culyba Lab</u> Matthew Culyba Marla Shaffer Robert Bilodeau

#### <u>Doi Lab</u>

Christi McElheny Erin Fowler Dominic Woods

<u>Shields Lab</u>

Ryan Shields

<u>Sluis-Cremer Lab</u>

John Barnard

Harrison Lab

Urish Lab Nguyen Lab Van Tyne Lab Dimitrov Lab

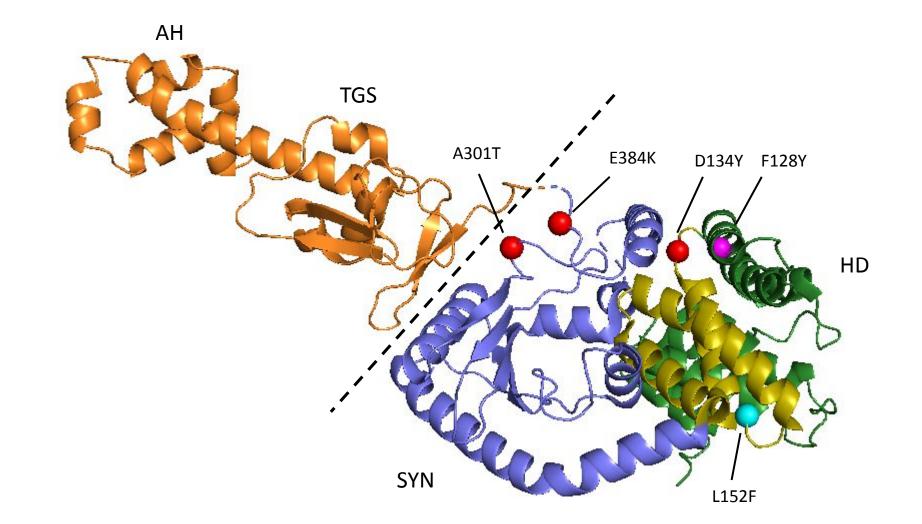
**Cooper Lab** 

Department of Medicine University of Pittsburgh

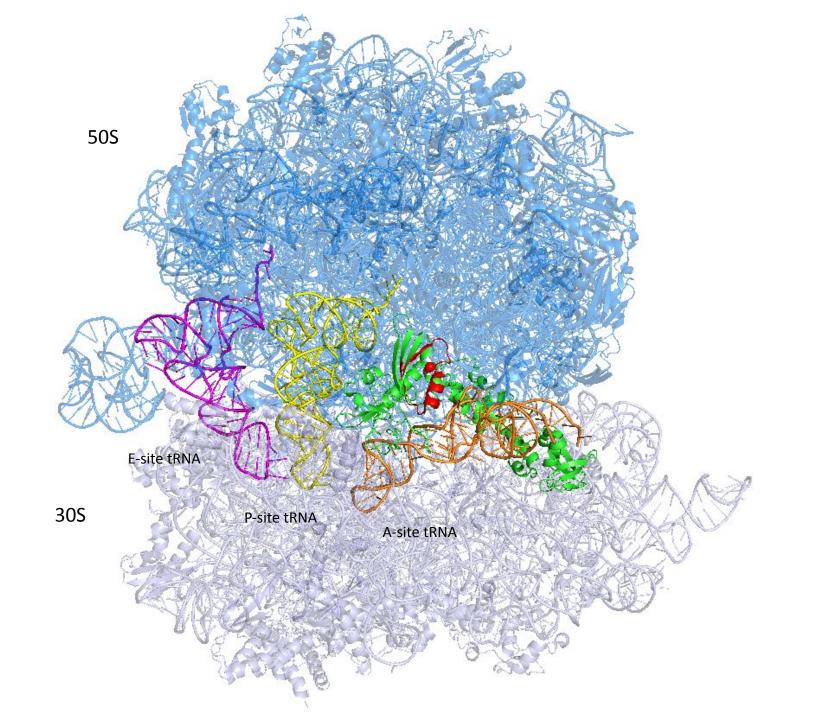
**Division of Infectious Diseases** 



NIH Nation

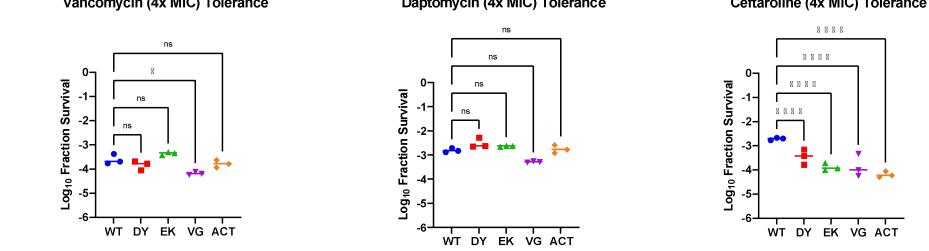

National Institutes of Health Turning Discovery Into Health

T32 Mentors


Lee Harrison Nicolas Sluis-Cremer

T32AI138954






Pausch 2020 PDB 6YXA



Pausch 2020 PDB 6HTQ

| SaRel<br>BsRel<br>EfRel        | 10D<br>1 MNNEYPYSADEVLHK<br>1 MANEQVLTAEQVIDK<br>1 MTKEEILTGPGVIKL        | 20L<br>AKSYLSADEYEY<br>ARSYLSDEHIAF<br>VSQYMGPEHVAF                 | 30K 40K<br>VLKSYHIAYEAHKGQFRK<br>VEKAYLYAEDAHREQYRK<br>VEKACEYATAAHDGQFRK     | 50Y 601<br>NGLPYIMHPIQVAGILTEN<br>SGEPYIIHPIQVAGILVDI<br>SGEPYIIHPIQVAGILADI           | 70T 801<br>IRLDGPTIVAGFLHDVIED<br>EMDPSTIAGGFLHDVVED<br>KMDPHTVATGFLHDVVED     | 90V<br>I<br>TPYTFEDVKEMFNEE<br>TDVTLDDLKEAFSEE<br>TEITLEDLREEFGDD | 100R 110K<br>/ARIVDGVTKLKKVKYRS<br>/AMLVDGVTKLGKIKYKS<br>/AMLVDGVTKLGKIKYKS | 120Q 130<br>KEEQQAENHRKLFIAI<br>QEEQQAENHRKMFVAN<br>HEEQLAENHRKMLLAN | A 140V<br>AKDVRVILVKLADRLHNMR 150<br>IAQDIRVILIKLADRLHNMR 150<br>IAQDLRVIMVKLADRLHNMR 150 |
|--------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| <b>SaRel</b><br>BsRel<br>EfRel | 151 TLKHLPQEKORRISN                                                       | ETLE IFAPLAHR                                                       | I GISKIKWELEDTALRYLI                                                          | VPOOYYR I VNI MKKKRAFE                                                                 | 220T 230D<br>REAYIETAIDRIRTEMDRM<br>RELYVDEVVNEVKKRVEEV<br>REKYVSGTVEDIRIATEEL | NIKADESGREKHIYSI                                                  | LYRKMVL ONKOENELYDL                                                         | LAVRIEVNSIKDCYAV                                                     | LGIIHTCWKPMPGREKDYL 300                                                                   |
| <b>SaRel</b><br>BsRel<br>EfRel | 310S<br>301 AMPKQNLYQSLHTTV<br>301 AMPKPNMYQSLHTTV<br>301 AMPKANMYQSLHTTV | 320G<br>VGPNGDPLEIQI<br>IGPKGDPLEVQI<br>IGPAGNPVEIQI                | 330F 340V<br>RTFDMHEIAEHGVAAHWA<br>RTFEMHEIAEYGVAAHWA<br>RTQEMHEIAEFGVAAHWA   | 350K 360Q<br>YKEGKKVSEKDQTYQNKL<br>YKEGK-AANEGA <u>T</u> FEKKL<br>YKEGKNEKVEPDGMTKQL   | 370A 380Q<br>WUKELAEADHTSSDAQEFI<br>WFREILEFQNESTDAEEFI<br>WFHEILELQDESYDASEFI | 390L<br>METLKYDLQSDKVYAF<br>MESLKIDLFSDMVYVF<br>MEGVKGDIFSDKVYVF  | 400P 410G<br>TPASDVIELPYGAVPID<br>TPKGDVIELPSGSVPID<br>TPKGDVTELPKGSGPLD    | 420I 430<br>FAYAIHSEVGNKMIGA<br>FSYRIHSEIGNKTIGA<br>FAYSIHTDIGNKTTGA | DG 4401<br>KVNGKIVPIDYILQTGDIV 450<br>KVNGKMVTLDHKLRTGDIV 449<br>KVNGKMVQLDYKLKNGDII 450  |
| <b>SaRel</b><br>BsRel<br>EfRel | 460G<br>451 EIRTSKHSYGPSRDW<br>450 EILTSKHSYGPSQDW<br>451 EIMTSPNSFGPSRDW | 470K<br>LKIVKSSSAKGK<br>VKLAQTSQAKHK<br>LKLVATSK <mark>A</mark> RNK | 480S 490N<br>IKSFFKKODRSSNIEKGRI<br>IROFFKKORREENVEKGRI<br>IKRFFKAODREENVIKGH | 500A 510E<br>MMVEAEIKEQGFRVEDIL<br>LVEKEIKNLDFELKDVL<br>SVVKCITDLGFTPKDIL              | 520V 530E<br>EKNIQVVNEKYNFANEDDI<br>PENIQKVADKFNFSNEEDI<br>KNKLQEALDRFNYQTEDDI | 540G<br>LFAAVGEGGVTSLQIV<br>MYAAVGYNGITALQVA<br>LYAAVGYGEVSPLTMA  | 550K 557-<br>VNKLTERORILDKO<br>ANRLTEKERKORDOEEQE<br>ANRLTEKERKEQKIEQOK     | 566E 571<br>RALNEAQEVTKSLPIK<br>KIVQEVTGEPKPYPQG<br>QEAEEIMNQPKKEPDK | 5I 586V<br>DNIITDSGVYVEGLENVLI 596<br>RKR EAGVRVKGIDNLLV 597<br>MKVRHEGGVVIQGVENLLI 600   |
| <b>SaRel</b><br>BsRel<br>EfRel | 606P<br>597 KLSKCCNPIPGDDIV<br>598 RLSKCCNPVPGDDIV<br>601 RISRCCNPIPGDDIV | 616K<br>GYTTKGHGTKVH<br>GFTTKGRGVSVH<br>GYTTKGRGTSTH                | 626D 634-<br>R TDCPN I KNE TERL<br>REDCPNVKTN EAQERL<br>RRDCPNVQPDKPNVAERL    | 642W 650Q<br>N <mark>VEW</mark> VKSKDA TQKYQ<br>PVEWEHESQVQKRKEYN<br>EVEWEDTSNT RKEYD/ | 660A 670V<br>VDLEVTAYDRNGLLNEVLG<br>/EIEILGYDRRGLLNEVLG<br>ADLEIYGYNRSGLLNDVLG | 680N<br>AVSSTAGNLIKVSGR<br>AVNETKTNISSVSGK<br>TVNALTKNLNSVEAR     | 690I 700V<br>SDIDKNAIINISVMVKNV<br>SDRNKVATIHMAIFIQNI<br>INKDKMATIHLTVGIQNL | 710R 720<br>NDVYRVVEKTKOLGDV<br>NHLHKVVERTKOTRDT<br>SHLKSTVDKTKAVPDV | DD<br>YYTYTRVWN 729<br>YSVRRVMN 734<br>YSVRRTNG 737                                       |



Vancomycin (4x MIC) Tolerance

Daptomycin (4x MIC) Tolerance

Ceftaroline (4x MIC) Tolerance