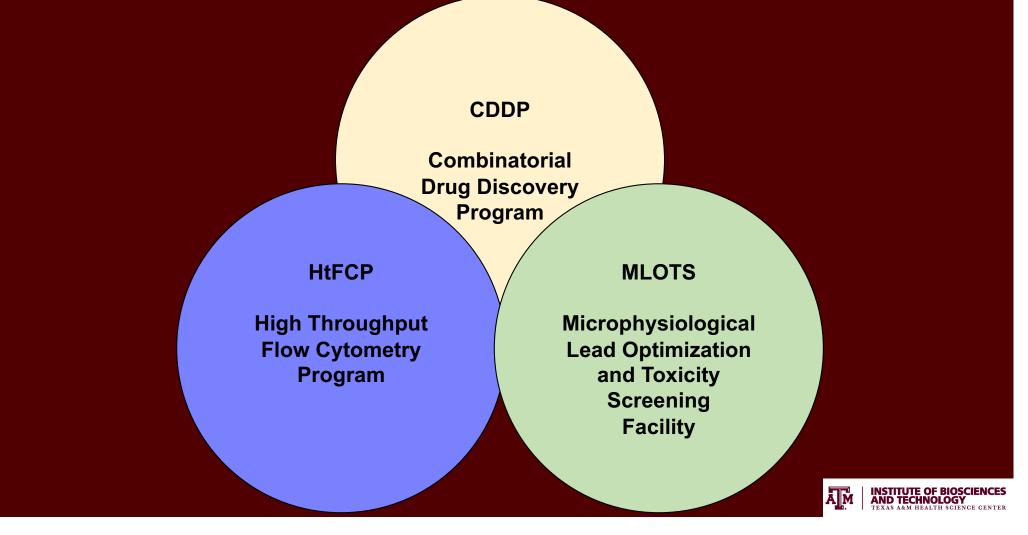
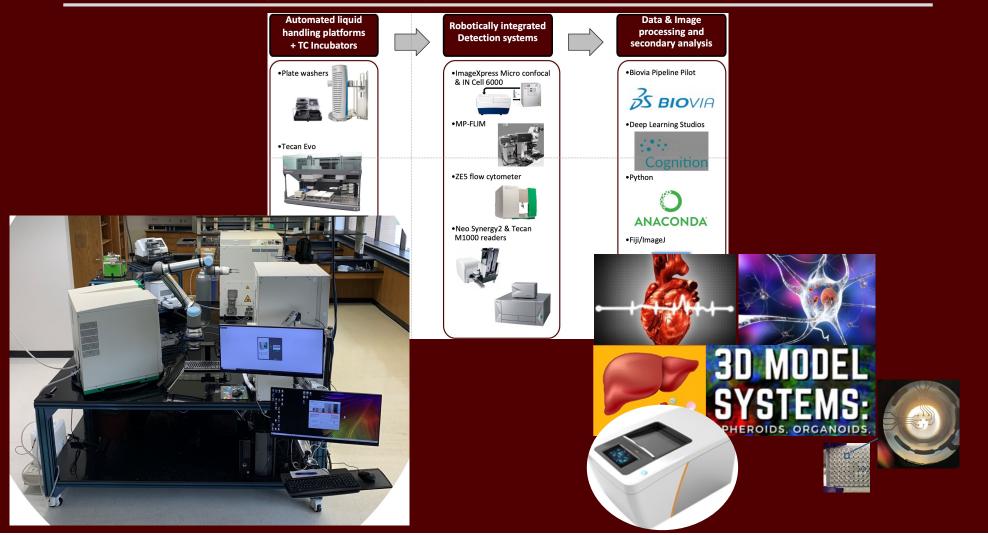

The Gulf Coast Consortia's High Throughput Research and Screening Center at the IBT

Peter Davies, MD, PhD Program Director pdavies@tamu.edu Clifford Stephan, PhD Scientific Director cstephan@tamu.edu

A M


INSTITUTE OF BIOSCIENCES AND TECHNOLOGY TEXAS A&M UNIVERSITY

GCC Consortium for Innovative Drug Discovery and Development (IDDD)



accelerator with advanced computational resources **Texas Medical Center and CPRIT Funding RP190674**

GCC Drug Discovery Cores at the Texas A&M IBT

GCC Drug Discovery Cores at the Texas A&M IBT

GCC Drug Discovery Cores at the Texas A&M IBT

Each of the Cores is:

- A unique, highly productive multi-institutional screening resource
- Available to academic, private, and corporate investigators
- Easily accessible Your neighbor in the Texas Medical Center located in the Texas A&M Institute of Biosciences and Technology
- Part of the GCC, the organization that lowers the barriers to collaboration for the member institutions

IBT Combinatorial Drug Discovery Program

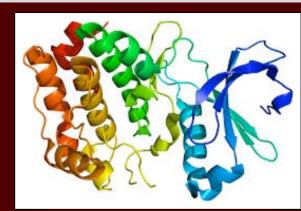
> Assay development and pilot screens

- Bench to HTS
- Grant support

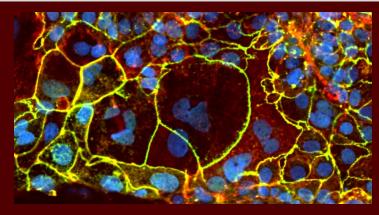
Single agent screens

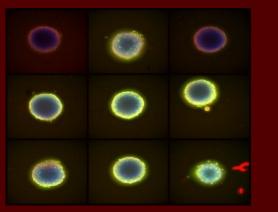
- Probe identification and Mechanism of action studies
- Focused screens

Combinatorial screens – "Repurposing"

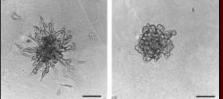

- Identifying therapeutic leads that can be rapidly advanced to preclinical and clinical evaluation
- Multi-component drug combinations (cocktails)
- Targeted agents overcoming resistance or lowering toxicity

Secondary analysis

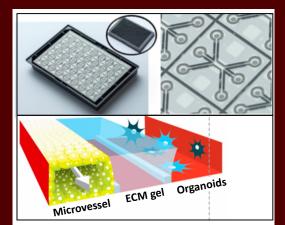

- Pharmacogenomics/transcriptomics analysis
- Biostatistics, conventional modeling, and deep learning


CDDP Target-Based & Phenotypic Drug Discovery Model Systems


Proteins (enzymes)



Cells



Spheroids

Organoids

Tissue Chips

Simple model organisms

CDDP Drug and Compound Collections

Library Focus	Library Focus
Approved Drug Library	Stem cell Differentiation Compound Library
	Cell cycle related compound Library
Oxidation-Reduction Compound Library	Apoptosis Compound Library
Anti-Metabolism disease Compound Library	Autophagy Compound Library
Mitochondrial Targeting Compound Library	DNA Damage _ Repair Compound Library
Epigenetics Compound Library	Ion Channel Inhibitor Library
	Endocrinology-Hormones Library
PI3K-AKT-mTOR Compound Library	Neuronal Signaling Compound Library
MAPK Inhibitor Library	
Tyrosine kinase inhibitor library	JAK STAT Compound Library
	Wnt_Hedgehog_Notch Compound Library
Selleck Bioactives Collection	
	Fluorochemical Library
Prestwick/Microsource Collections	Natural Compound Library

CDDP maintains a collection of drugs and investigational agents approved for use in humans, bioactive compounds, natural products, and some small molecules. The Core maintains > 35,000 testable agents.

High Throughput Flow Cytometry Program - HtFCP

Services provided with automated HT flow cytometry for drug discovery:

- Speed: automated HT drug screening in hours vs days
- Scalability: can run large scale drug screens > 9,000 samples/day
- Customized projects:
 - o Ability to multiplex endpoints
 - Detection of extracellular vesicles, exosomes, and nanoparticles (LOD 0.2µm)
 - o Informatics analysis with machine learning and AI

Major equipment:

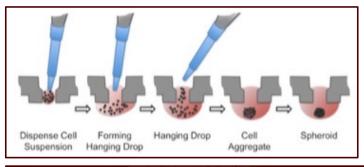
Bio-Rad ZE5 High Throughput Flow Cytometer

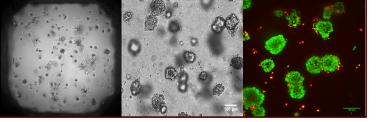
- 5 laser and 30 detectors
- Continuous 24hr sampling from tubes or multiwell plates

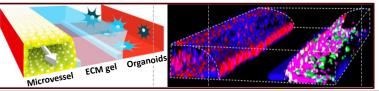
BD Biosciences FACSFusion Cell sorter

- 4 lasers (405 nm, 488 nm, 561 nm, and 640 nm) and 15 filters
- BSL2 level sorting of single cells into bulk tubes or 96 well plates

Cytek Aurora Spectral Flow Cytometer


- 3 lasers (488, 567, and 640 nm) and 32 fluorescent channels
- full imaging spectral flow cytometry




- Current CPRIT-Funded resources for drug discovery in the Texas Medical Center and the region.
- MLOTS fills a perceived void in the pipeline for efficacy testing in 3D and microfluidic models and early toxicity testing (CV, CNS, Liver)

Microphysiological Lead Optimization & Toxicity Screening - MLOTS

MLOTS - 3D Model Efficacy Testing for Lead Optimization

Cellular Spheroids

- Hanging drop
- Ultralow attachment
- n3D Magnetic beads

Cellular Organoids

- Cells cultured in ECM
- Stem cell focused

Microfluidic, Multicellular Models

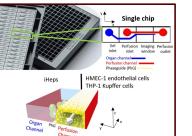
- High throughput (96/64/48 well)
- Vascularized organoids

Microphysiological Lead Optimization & Toxicity Screening - MLOTS

MLOTS – Fail Early/Tox Identification Testing for Lead Optimization

Liver Toxicity Testing – Initial Model

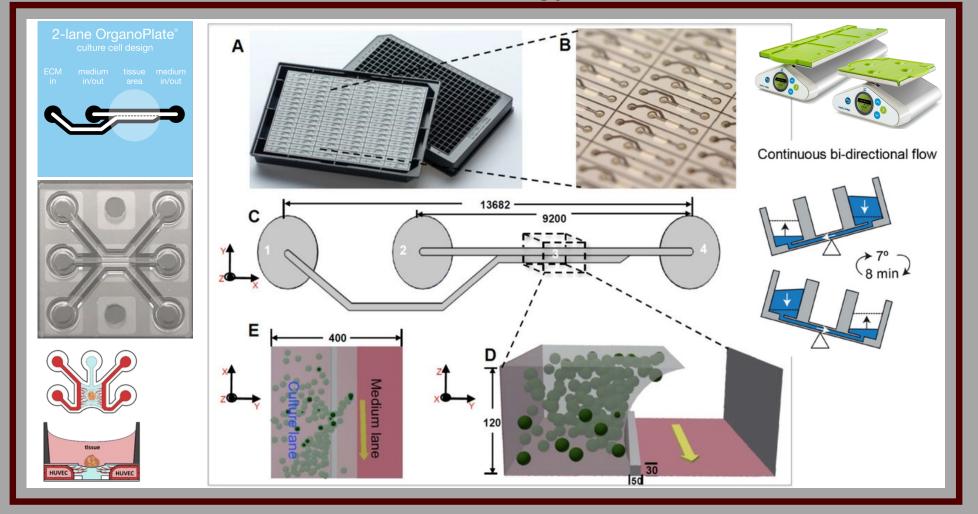
> Toxicology. 2021 Feb 28;450:152667. doi: 10.1016/j.tox.2020.152667. Epub 2021 Jan 6.


A 3D microfluidic liver model for high throughput compound toxicity screening in the OrganoPlate®

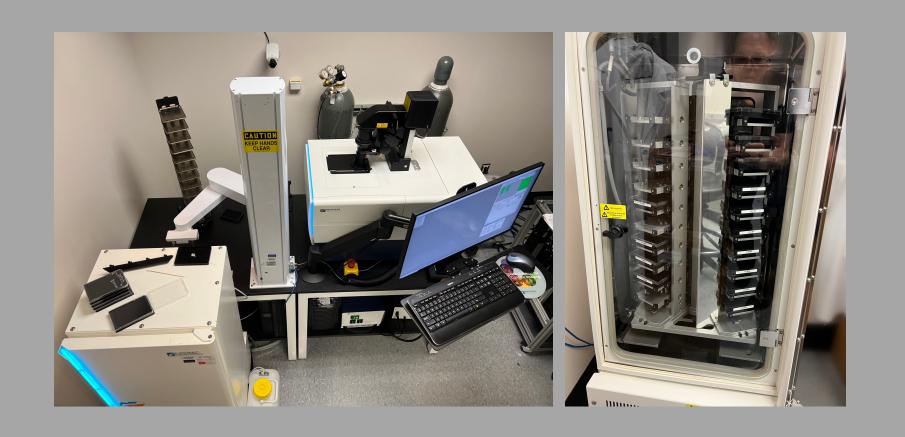
Kristin M Bircsak ¹, Richard DeBiasio ², Mark Miedel ², Alaa Alsebahi ³, Ryan Reddinger ³, Anthony Saleh ³, Tongying Shun ², Lawrence A Vernetti ², Albert Gough ⁴

Affiliations + expand PMID: 33359578 DOI: 10.1016/j.tox.2020.152667

Multi-well plate format 96 'Chips'/plate



Multi-cellular Vascular channel with perfusion


usion: HMEC-1/TH

Organ: iHep clusters

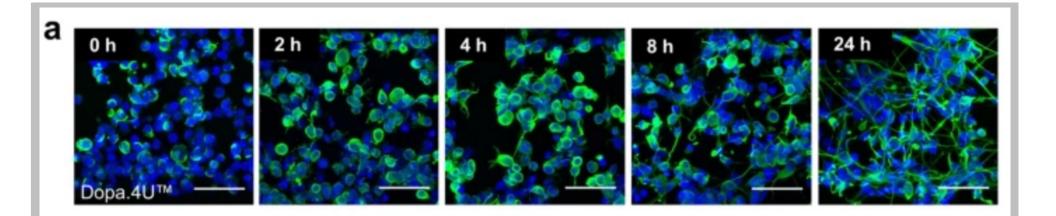
Mimetas Technology Platform

IBT Mimetas Imaging Automation Platform

The Mimetas Microfluidic Platform – Neural Applications

Open Access Published: 09 December 2016

High-throughput compound evaluation on 3D networks of neurons and glia in a microfluidic platform


Nienke R. Wevers, Remko van Vught, Karlijn J. Wilschut, Arnaud Nicolas, Chiwan Chiang, Henriette L. Lanz, Sebastiaan J. Trietsch, Jos Joore & Paul Vulto

Scientific Reports 6, Article number: 38856 (2016) Cite this article

11k Accesses | 85 Citations | 15 Altmetric | Metrics

PMID: 27934939

The Mimetas Microfluidic Platform – Neural Applications

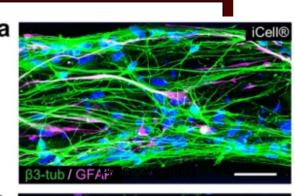
Open Access Published: 09 December 2016

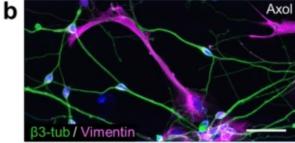
High-throughput compound evolution of neurons and glia in a microflution

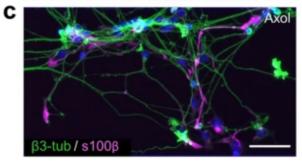
<u>Nienke R. Wevers, Remko van Vught, Karlijn J. Wilschut,</u> <u>Lanz, Sebastiaan J. Trietsch, Jos Joore & Paul Vulto</u>

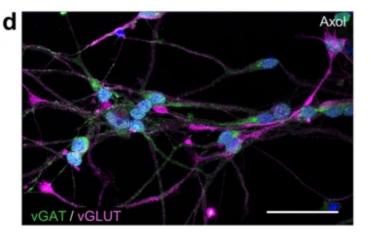
Scientific Reports 6, Article number: 38856 (2016) | Ci 11k Accesses | 85 Citations | 15 Altmetric | Metrics

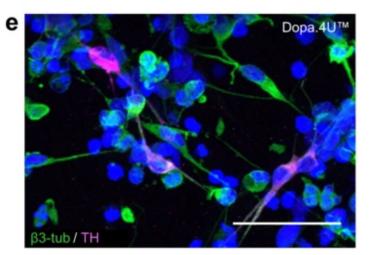
The OrganoPlate[®] supports growth and differentiation of various cerebral cell types.

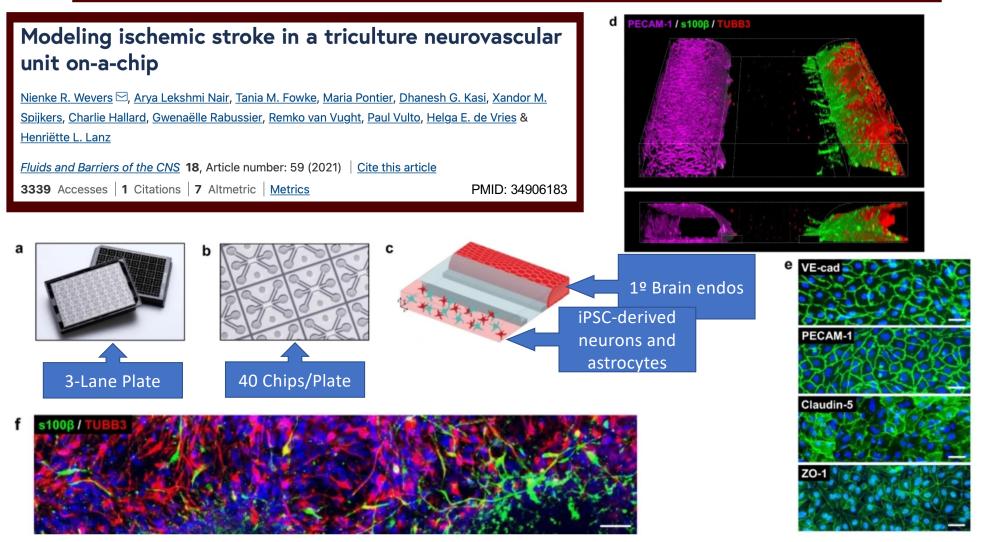

Maximum projections of immunofluorescent images:


(a) A co-culture of mature iCell[®] neurons (β 3-tubulin) and astrocytes (GFAP) at day 14.


(b,c) Axol Huntington neural stem cells have differentiated into neurons and astrocytes @ 6wks


(d) Axol neural stem cells show both glutamatergic (vGLUT) and GABAergic (vGAT) neurons @ 6 wks


(e) Dopa.4U[™] neurons at day 5



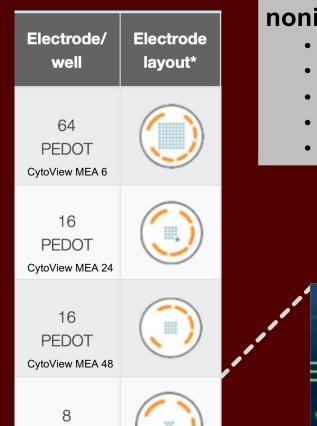
The Mimetas Microfluidic Platform – Neural Applications

Microphysiological Lead Optimization & Toxicity Screening - MLOTS

MLOTS – Fail Early/Tox Identification Testing for Lead Optimization

Cardiovascular and CNS

iPSC cardiovascular and neuronal cells

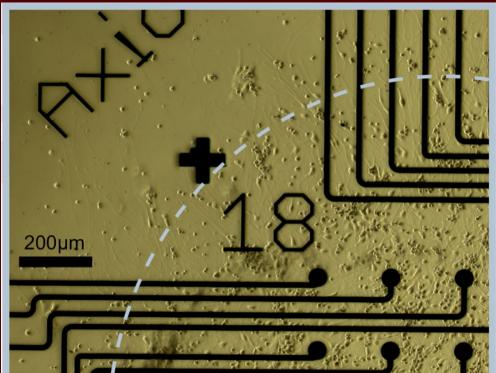

Neural – Measure the key parameters of neural network function, including activity (functional), synchrony (synapses), and oscillation (networks).

Cardiac – Record the four key measures of functional cardiac performance, label free and in real time in multiwell plates: action potential (LEAP assay); field potential; propagation; and contractility.

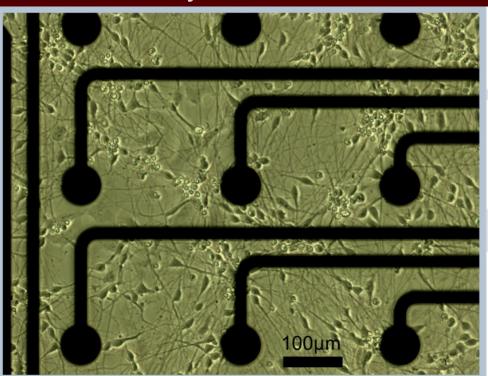
MEA Viability - orthogonal measure

Impedance to track cell growth and morphology in real-time

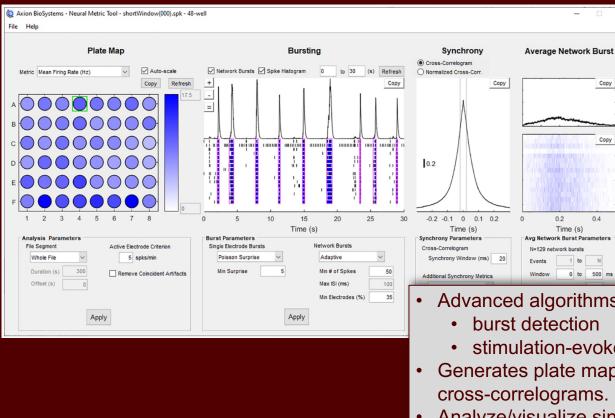
Microelectrode Array (MEA) Technology Platform



Axion MEA plate features allow real-time, label-free, and noninvasive electrophysiological assays:


- Up to 768 low-noise electrodes per plate
- Recording or stimulation capability for each electrode
- Integrated, independent ground electrodes
- Conical shaped wells, optical plate bottoms
- CO₂ + Evaporation-reducing lids with humidity chambers

Human Cortical Neuron Morphology Cultured on CytoView MEA Plates



- Day 4 in culture
- 4X magnification
- Cells confined to the area indicated by the dotted line surrounding the grid of circular electrodes.

- Day 4 in culture
- 10X magnification
- Branching and neurite outgrowth is visible
- Optical bottoms allow for continuous cell monitoring

Record and Analyze Activity Using the Axion Neural Module Software

- Advanced algorithms for:
 - stimulation-evoked activity analysis

×

=

- Generates plate map visualizations, raster plots, and synchrony
- Analyze/visualize single unit activity from sorted spikes. •
- Explore high resolution rasters, analyze single unit participation in • network events
- Characterize the response of single units to chemical, electrical, • or optical stimulation.

Published Neuronal Applications from Axion Biosystems Internet Site

Development of a human derived induced pluripotent stem cell neuronal assay for early *in vitro* detection of seizure liability

K L Rockley¹; R A Roberts¹; M J Morton¹ ¹ApconiX, Alderley Park, Alderley Edge, Cheshire, UK

Identifying Seizures with MEA: Complementary Human and Rat Neuronal Models Enhance Predictivity

You Feng, Jenifer Bradley, Sergiy Viatchenko-Karpinski, and Christopher Strock Cyprotex US, LLC., an Evotec Company, Watertown, MA.

https://www.cyprotex.com/toxicology/neurotoxicity/eciphrneuro/

Derivation of peripheral nociceptive, mechanoreceptive, and proprioceptive sensory neurons from the same culture of human pluripotent stem cells

Saito-Diaz K, Street JR, et al. Stem Cell Reports. (2021) PMID: 33545066

Multi-electrode array of sensory neurons as an *in vitro* platform to identify the nociceptive response to pharmaceutical buffer systems of injectable biologics

Eaton M, Que Z, et al. Pharmaceutical Research. (2021) PMID: 34244893

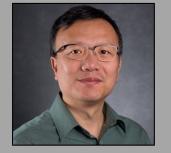
Inhibition of sodium conductance by cannabigerol contributes to a reduction of dorsal root ganglion neuron excitability

Ghovanloo M-R, Estacion M, et al. British Journal of Pharmacology. (2022) PMID: 35297036

Publication Topics of Applications from Axion Biosystems

- Neural characterization and development
 - Neural circuit and innervation
 - Neural co-culture and glial interaction
 - Neural optical and electrical stimulation
 - Neural organoids
 - Neurological diseases
 - Neuromuscular junction
 - Neurotoxicity and safety
 - Pain
 - Retina

IBT High Throughput Research and Screening Center "Our Team"



Specialized Expertise – "The Heart of the Core"

Scientific and Technical Staff: Industry level HTS, Imaging and Data Analysis, Informatics, Robotics, Automation, Tissue culture

The Combinatorial Drug Discovery Core

Peter Davies, MD, PhD Program Director pdavies@tamu.edu Clifford Stephan, PhD Scientific Director cstephan@tamu.edu

https://ibt.tamu.edu/cores/high-throughput

INSTITUTE OF BIOSCIENCES AND TECHNOLOGY TEXAS A&M UNIVERSITY

Funding from CPRIT: RP190581, RP200668, RP210108